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cell lymphoma by quantifying pro-proliferative and anti-
apoptotic signatures from genetic sequencing data
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Genetic heterogeneity and co-occurring driver mutations impact clinical outcomes in blood cancers, but predicting the emergent
effect of co-occurring mutations that impact multiple complex and interacting signalling networks is challenging. Here, we used
mathematical models to predict the impact of co-occurring mutations on cellular signalling and cell fates in diffuse large B cell
lymphoma and multiple myeloma. Simulations predicted adverse impact on clinical prognosis when combinations of mutations
induced both anti-apoptotic (AA) and pro-proliferative (PP) signalling. We integrated patient-specific mutational profiles into
personalised lymphoma models, and identified patients characterised by simultaneous upregulation of anti-apoptotic and pro-
proliferative (AAPP) signalling in all genomic and cell-of-origin classifications (8-25% of patients). In a discovery cohort and two
validation cohorts, patients with upregulation of neither, one (AA or PP), or both (AAPP) signalling states had good, intermediate
and poor prognosis respectively. Combining AAPP signalling with genetic or clinical prognostic predictors reliably stratified patients
into striking prognostic categories. AAPP patients in poor prognosis genetic clusters had 7.8 months median overall survival, while
patients lacking both features had 90% overall survival at 120 months in a validation cohort. Personalised computational models
enable identification of novel risk-stratified patient subgroups, providing a valuable tool for future risk-adapted clinical trials.
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INTRODUCTION
Mutational heterogeneity in haematological malignancies repre-
sents a major barrier to reliable prognostication and the
development of rationally targeted novel treatment strategies.
With the advent of whole exome sequencing (WES) many
malignancies, including B cell malignancies such as Diffuse Large
B cell Lymphoma (DLBCL) and Multiple Myeloma (MM), have
become characterised by interpatient mutational heterogeneity
[1, 2]. This heterogeneity contributes to variation in response to
current treatments.
The most aggressive haematological malignancies fre-

quently contain genetic aberrations affecting multiple genes,
either through co-occurring mutations, e.g. double hit (DH)
DLBCL or changes in the copy number of chromosomal regions
containing multiple genes, e.g. gain1q MM. DH DLBCL,
featuring overexpression of MYC and BCL2 (or BCL6), is among
the most aggressive lymphoid malignancies, with very poor
patient outcomes [3, 4]. However, DH DLBCL represents fewer
than 10% of all cases, while many more (30–40%) DLBCL
patients relapse following frontline treatment [5]. So, new
approaches are clearly needed to prospectively identify poor
prognosis patients with the aim of developing more effective
treatment strategies for these patients.

Gene expression profiling can split DLBCL into subgroups based
on their putative cell of origin (germinal centre -GC, or activated B
cell -ABC) [6]. Subsequent studies leveraged genomic sequencing
to identify 5 or more prognostically informative patient clusters
[7–9]. These genetic groups have been arbitrarily named clusters
1–5 (C1–C5) or with a nomenclature referencing the most mutated
signalling pathways (MCD=MYD88+ CD79B); both are broadly
consistent across multiple studies (e.g. C5 aligns with MCD) [7–9].
However, clustering patients in this way largely ignores the
complexity of the molecular signalling networks that may be
impacted by their individual genetic landscapes. For example, a
patient with most mutations converging on NF-κB is likely to be
assigned to C5 [7], an assignment that ignores the presence or
absence of functionally significant co-occurring mutations in other
pathways that may impact prognosis.
Computational models of molecular signalling in normal B cells

have been used to predict cell proliferation and survival;
predictions that have been validated by in vitro laboratory
experiments with single-cell resolution [10–13]. Furthermore,
incorporating mutations and the impact of mutations on protein
abundance/activity, into these models predicts cellular responses
in experimental assays [10, 11, 14, 15]. However, it is not known
whether these models can predict outcomes at the individual
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patient scale, nor whether mutational data alone is sufficient to
enable in silico simulations to make clinically relevant predictions
of prognosis in blood cancers. We hypothesise that contextualis-
ing sequencing data within patient-specific, virtual signalling
networks may more precisely delineate the consequent cell fate
decisions that impact prognosis.
In this study, we used mechanistic computational models to

simulate how mutations combine in B cell malignancies. We
developed a pipeline to create individual patient simulations using
WES and targeted genomic sequencing data, and tested whether
these personalised models could generate clinically informative
prognostic information.

MATERIALS AND METHODS
Detailed computational methods, and a lay summary of the methods to
generate all computational figures, are provided in the Supplementary
Material. Methods are summarised below. Code (as Jupyter notebooks)
used to generate and run all computational models, including descriptions
of the reactions, parameters and rate laws of each model and code to plot
output are available in the Github repository (https://github.com/SiFTW/
norrisEtAl).

Model generation
We employed established computational models of healthy B cells, which
enable simulation of proliferation, apoptosis and terminal B cell
differentiation in a heterogeneous B cell population [10, 11, 13]. The
models consisted of a series of differential equations representing the rate
of change of biomolecules (mRNAs, proteins, or protein complexes) over
time. Models were converted to Julia to be solved using DifferentialEqua-
tions.jl [16, 17].

Cell cycle and apoptosis modelling
The molecular networks representing apoptosis and the cell cycle were
isolated from the comprehensive B cell model [10, 11, 18]. Cell-to-cell
variability was simulated by distributing model parameters as described
previously [10]. Overexpression of MYC and BCL2 was simulated by
increasing the parameter controlling the transcription rate of the
respective mRNA. An equilibrium phase was simulated prior to all time
course simulations. For the cell cycle model, the equilibrium phase ended
when the value of cell mass reached prior to each cell division was the
same (to within 3 decimal places) for 5 consecutive cycles. The final state of
the equilibrium phase was used as the initial condition for the time course
phase. Cell death was defined as the first time point at which over 10% of
poly (ADP-ribose) polymerase (PARP) was cleaved.

Multi-scale model
The NF-κB component of the established B cell model was updated to
include reactions from a more recent and comprehensive model of NF-κB
[12]. Apoptosis and cell division were triggered as published previously
(cleaved PARP > 2500 triggers apoptosis, CDH1 > 0.1 triggers cell division)
[10, 11]. Previous studies introduced two separately simulated daughter
cells with each cell division [10, 11, 18], however here this resulted in an
unfeasible simulation size in highly proliferative simulations. Cell fates have
been shown to be reliably inherited in B cells such that daughter cells will
achieve similar fates at similar times [16]. Therefore, at each cell division we
replaced the mother cell with a single simulation representing 2(generation-1)

daughter cells (2 cells following first division, 4 cells following second
division etc).

Modelling patients
Mutation profiles identified from genomic sequencing and clinical data were
downloaded through the cBioPortal [7], or supplements of published studies.
We restricted the analysis to genetic changes impacting genes that could be
mapped to modelled parameters (https://github.com/SiFTW/norrisEtAl/blob/
main/geneList.txt) and leveraged OncoKB to simulate the impact of mutations
annotated as ‘likely oncogenic’ [19]. We created 113 patient-specific models
using a discovery cohort of DLBCL patients [7], and subsequently validated the
findings in 629 patient-specific models using data from 2 validation cohorts of
DLBCL patients from recently conducted studies [8, 20]. We assumed half of
the normal expression rate of each mRNA could be attributed to one of the

two copies of the gene. Therefore, parameters halved for copy number loss
and loss-of-function mutations and increased by half (1.5-fold change) for copy
number gain and gain-of-function mutations. Copy number alterations of
chromosomal regions were modelled by identifying each gene that could be
mapped to model parameters within the chromosomal region. Multiple
mutations affecting the same parameter were combined multiplicatively. For
example a patient with a MYD88 mutation and a CD79B mutation (both
increasing NEMO:IKK activity by 1.5-fold individually) was simulated as 2.25-fold
increased NEMO:IKK activity. The effect of mutations in genes not modelled
directly was assigned to the closest modelled molecular species: e.g. MCL1 is
modelled as overexpression of BCL2, and CARD11 mutations are modelled as
increasing NEMO:IKK activity. Patient simulations were performed for
12 simulated hours, on a single-cell with all parameters consistent across all
patients other than those impacted by mutations. For simulations of the
discovery cohort we simulated 100 cells for each patient and took the mean
abundance values for each molecular species. For validation cohorts only one
cell was simulated per patient, which was identical in all simulations other than
parameters impacted by mutations. The concentration of pro-apoptotic factors
(cytoplasmic cytochrome c: cCytoC and second mitochondria-derived activator
of caspase: cSmac) and pro-proliferative factor (Cadherin1: Cdh1) at 6 h was
used for patient stratification, with patients stratified above or below the mean
concentration at that time point.

Downstream analysis
All model outputs were analysed, and plots generated using the Julia
programming language. Scripts relating to each figure can be found in the
corresponding folder available in the GitHub repository (https://
github.com/SiFTW/norrisEtAl/).

RESULTS
Simulating individual mutations recapitulates experimental
measurements
To determine whether established computational models of B cell
molecular signalling could make predictions of patient outcomes
we first focused on DH DLBCL. The apoptotic regulatory network
was isolated from an established B cell model, and we simulated
the impact of BCL2 overexpression on apoptotic signalling [11, 18]
(Fig. 1A). A gene dose-dependent delay of apoptosis measured by
PARP cleavage up to the equivalent of 5 extra copies of BCL2 was
seen in these simulations, beyond which the cells survive the full
140 h of the simulation (Fig. 1B). We repeated these simulations in
a population of 1000 molecularly heterogeneous individual B cells
(Fig. 1C and S1A). In these simulations cell death times retained a
log-normal distribution, but 1.5-fold overexpression of BCL2
increased the mean survival time in individual B cells by 1.3-fold
(Fig. 1C). This is consistent with the delayed cell death seen in B
cells from BCL2-overexpressing mice [21].
MYC is a proto-oncogene that codes for a multi-functional

transcription factor (cMyc) with a prominent role in tumour cell
growth, which has previously been modelled as acting on B cell
progression within the cell cycle [13, 22]. Simulating cMyc as
promoting cell proliferation has been found to recapitulate both
single-cell and bulk experimental measurements [10, 11]. We isolated
the cell cycle regulatory network from an established model of B cells
and simulated the impact of overexpression of MYC [11, 18] (Fig. 1D).
These simulations predicted that increasing MYC expression by the
equivalent of 1 extra copy (1.5-fold increase) shortens the cell cycle by
just 8minutes in a 12-h cycle; an effect size much smaller than
expected (Fig. 1E). The sensitivity analysis also found that MYC
expression had a smaller effect on cell cycle time than other genes in
the pathway (Fig. S2). Importantly, this result recapitulated experi-
mental tracking of division times in B cells transfected with MYC and
cellular proliferation measurement in lymphocytes from Eμ-Myc mice
[23]. In simulations of increasing levels of MYC expression, the small
decrease in total cell cycle time was primarily due to a shortening of
G1 phase, with a gene dose-dependent effect up to the equivalent of
5-fold higher expression, after which no further effect was seen
(Fig. 1E). Upregulating MYC (x1.5) in a heterogeneous population of
1000 individual cells confirmed these findings and resulted in
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simulated cell cycle timings that recapitulated the distribution of cell
cycle duration measured by time-lapse microscopy in murine B
lymphocytes [24] (Figs. 1F and S1B). In these simulations, increased
MYC expression was found to have a minor effect in all cells,
decreasing total average cell cycle time by just 11.5minutes in a 12-h
cycle (Fig. 1F). The wild-type simulation identified a population of cells

(8%) in cell cycle arrest. Concentrations of the cell cycle inhibitor p27,
and complexes containing p27, were upregulated in these arrested
cells (Fig. S3), which recapitulates experimental measurements of cell
cycle arrest [25]. Interestingly, in simulations of 1.5-fold MYC
overexpression the cell cycle arrest was reversed in over 80% of
these cells (Fig. 1G). The number of cells rescued from arrest by MYC

Fig. 1 Computational modelling of the cell cycle and apoptosis reveal limited impact of archetypal double hit mutations on their
respective molecular networks. A–C Apoptosis model simulations. D–F Cell cycle model simulations. A Schematic of the apoptosis model
leading to cleavage of PARP. Green border: pro-apoptotic regulator, red border: anti-apoptotic regulator, bold black: fate-determining species
in the model. B (top) The percentage of cleaved PARP over time for two simulations (WT and BCL2 overexpressed) using the apoptosis model.
There is a delay in PARP cleavage in the presence of overexpressed BCL2. B (bottom) Increasing time to death for cells with increasing BCL2
expression. C Graph showing distribution of time to death in a simulation of 1000 cells, unmutated (black) compared to 1.5-fold BCL2
upregulation (green). D Schematic of the impact of cMyc on the cell cycle model. Green border: pro-apoptotic regulator, red border: anti-
apoptotic regulator, bold black: fate-determining species in the model. E (top) Output of the abundancies of different cell cycle proteins run to
a limit cycle for a WT cell (solid line) and a cell in which MYC is overexpressed (dotted line) showing a slight shortening of the cell cycle for
some. CycA/D/E= Cyclin A/D/E, Cdh1= cdc20 homologue 1. E (bottom) Time for completion of cell cycle phases for cells with varying MYC
expression showing the main effect is in G1. F Distribution of time to cell division for simulations of heterogeneous populations of 1000 cells.
Unmutated (black) compared to 1.5-fold MYC upregulation (green) show very little difference. G Number of cells, from the simulations in (F),
for which the cell cycle has arrested in unmutated cells and cells in which MYC is upregulated 1.5-fold. Upregulated MYC substantially reduces
the number of cells in cell cycle arrest.
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overexpression was proportional to the level of MYC expression (Fig.
S4) and these rescued cells became the most rapidly proliferating cells
within the cell population (Figs. 1G and S1B). In keeping with these
findings, MYC is amongst the most differentially expressed genes in
quiescence and reverses quiescence in haematopoietic stem cells
[25, 26]. Recent data has demonstrated that increasing the abundance
of cMyc can enable senescent cancer cells to resume division [27].
Taken together this data shows that computational modelling of the
impact of MYC and BCL2 mutations, on the cell cycle and apoptosis
respectively, accurately recapitulates multiple experimental
measurements.

Multi-scale modelling predicts that mutations that converge
on apoptosis and the cell cycle confer poor prognosis in blood
cancer patients
To establish whether computational simulations can accurately
predict patient outcomes, we initially simulated the well-
characterised subgroup of lymphoma patients with mutations
affecting MYC and BCL2 (DH lymphoma). An agent-based

multiscale model, previously used to simulate immune responses,
was used here [10, 11, 13]. In this framework NF-κB-activation
through NEMO:IKK provided the input, resulting in the induction
of NF-κB target genes (e.g. CYCD, MYC, IRF4, BCL2). The impact of
these target genes on the molecular networks controlling cell
division and death could trigger the cell cycle to complete mitosis
(resulting in daughter cells being added) or the cell to undergo
apoptosis (resulting in the cell being removed, Figs. 2A and S5, see
methods). Simulations with upregulated (equivalent to 1 extra
copy, 1.5-fold increased expression) MYC and BCL2, resulted in cell
number increases due to increased cell division and survival
respectively. When both genes were upregulated (1.5-fold
expression) cell counts increased in an additive manner (Fig. 2B,
left). However, a 4–6 fold increase in expression of BCL2 and MYC
is commonly observed in these genes when they are mutated in
lymphoma patient samples [28]. Under these conditions (5-fold
increased expression), the simulations resulted in an exponential
increase in cell numbers (Fig. 2B, right). The classification of DH
lymphoma includes mutations in MYC and BCL2 or BCL6, but

Fig. 2 Multi-scale modelling of mutations in subsets of DLBCL and Multiple Myeloma recapitulates clinical trial data. A (left) Simplified
schematic model divided into component signalling pathways featuring NF-κB signalling, apoptosis, the cell cycle and differentiation
(adapted from ref. 11), full details provided in Supplementary Material. A (right) Schematic representation of the progression of cell lineages
over time during multiscale simulations. The example depicts a mutation that allows cells to continue to proliferate when they would
otherwise die. B, C Simulated cell population size (cell count) over time for wild-type (blue), individual mutations (orange and red) and double
hits where both mutations are combined (green). D Overall survival (OS) data for groups of patients with MYC and BCL2/BCL6mutations. E Cell
population size (cell count) over time for simulations of gain1q multiple myeloma. CKS1B and MCL1 are located on chromosome 1q and
therefore amplifications in this chromosome increase the abundance of both of these genes. F Progression-free survival (PFS) data for groups
of patients with upregulation of CKS1B and MCL1 due to 2, 3 or 4 or more copies of chromosome 1q. NR not reached.
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performing the same simulation on the MYC+ BCL6 DH lym-
phoma resulted in a substantially smaller effect compared to the
MYC+ BCL2 DH (Fig. 2C). Using cell numbers as a proxy for disease
prognosis resulted in predictions that MYC+ BCL2 DH lymphoma
would have worse prognosis than MYC+ BCL6 DH lymphoma (Fig.
2B, C). This was confirmed in a multicentre retrospective data
collection study [29], which showed that MYC+ BCL6 DH
lymphoma does not represent high-risk lymphoma, while MYC+
BCL2 DH lymphoma has particularly poor prognosis (Fig. 2D).
To determine whether computational predictions could recapi-

tulate disease prognosis in other high-risk haematological
malignancies we simulated gain 1q MM (Fig. 2E). Gain 1q is a
commonly occurring cytogenetic event in MM associated with
therapeutic failure and inferior prognosis [30]. Genes encoding the
Bcl2-family protein Mcl1 (MCL1) and cell cycle regulator Cks1b
(CKS1B) both reside on chromosome 1q21 and have been
implicated in the pathogenesis of gain1q MM [31]. Simulating
the upregulation of each gene individually and in combination
revealed a dose-dependent increase in cell numbers as the
number of copies of genes on 1q increased (Fig. 2E). Retrospective
analysis of clinical data found a dose-dependent worsening
prognosis with increasing copies of chromosome 1q [19] (Fig. 2F).
Strikingly, with a 5-fold increase in expression of MCL1 and CKS1B
the cell population continues to increase beyond the presence of
any input signal (IKK activity returns to basal by 72 h, Fig. S6).
These simulations indicate that amplification of the chromosomal
region containing MCL1 and CKS1B may result in constitutive
signalling and microenvironmental independence, which is
circumstantially supported by the observation that 1q21 is
amplified in 91% of MM cell lines [32].
We noted that within the models we were using, MYC and BCL2

in DH lymphoma impact the cell cycle and apoptotic regulatory
networks respectively, while BCL6 is situated within molecular
networks controlling terminal B cell differentiation (Fig. S5). In the
context of gain1q MM, CKS1B and MCL1 overexpression also
results in the perturbation of the cell cycle and apoptosis
respectively. Consistent with DH lymphoma, we found that (in
MM) when mutations simultaneously impact the cell cycle and
apoptosis they combined deleteriously in simulations and
conferred poor prognosis in clinical data [19, 29].

A computational pipeline enables simulations of
heterogeneous patients from WES data by mapping
mutations to simulation parameters
Having demonstrated that the model can accurately predict
known poor prognosis mutation combinations, we next sought to
establish whether other co-occurring deleterious mutations that
impact both the cell cycle and apoptosis could be identified
through computational modelling. Comparing simulations of
activating mutations in BCL2 and MYC to simulations of an
upstream NEMO:IKK/NF-κB-activating mutation demonstrated that
NF-κB-activating mutations could cause an increase in both BCL2
and MYC mRNA similar to that seen in DH lymphomas (Fig. 3A).
Upregulation of IKK and MYC results in downregulation of the cell
cycle regulator Cdh1 at 6 h, 9 h and 12 h (Figs. 1E, 3B and S7),
indicating more rapid progression through the G1 phase of the
cell cycle, while activating mutations in BCL2 decrease the release
of the apoptosis-inducing proteins cytochrome c and Smac to the
cytoplasm (Figs. 3C and S7).
To employ the model to identify additional combinations of

mutations that could result in simultaneous anti-apoptotic and
pro-proliferative molecular signalling, we sought to leverage a
WES dataset that capture the mutational heterogeneity in
individual DLBCL patients [7]. We developed a pipeline to map
both individual gene-level mutations and chromosomal arm-level
copy number alterations to computational parameters in the
multi-scale model (Fig. 3D, see Materials and Methods). This
process created 113 patient-specific models, with parameters

modified based on gene alterations described from analysis of
WES data (Fig. 3D), while all other parameters remained the same
[33]. Calculating the mean of Cdh1, cytoplasmic Smac (cSmac) and
cytoplasmic CytoC (cCytoC) values across 100 cells enabled
identification of a subset of patients with below average Cdh1
(pro-proliferative: PP, Fig. 3E example patients 3 and 4), and/or
below average cSmac and cCytoC (anti-apoptotic: AA, Fig. 3F
example patients 2 and 3). Patients with both anti-apoptotic and
pro-proliferative signalling (AAPP) could be identified (Fig. 3E, F
example patient 3), along with patients with neither AA or PP
signalling states (Fig. 3E, F example patient 1).

Personalised patient simulations identify an anti-apoptotic
and pro-proliferative subgroup of patients with poor
prognosis
Analysing pro-proliferative (PP) and anti-apoptotic (AA) factors
over time for individual patient simulations revealed highly
heterogeneous expression between patients, with most dynamic
changes occurring in the first 6 h (Fig. 3A). Values at 6 h were
chosen to stratify patients as this was the earliest time point at
which most transient dynamics had passed but cells had not been
removed from the simulation due to cell division or cell death.
Furthermore, the abundance of BCL2 and MYC mRNA at later time
points correlated strongly with those at 6 h (R2 > 0.97 between 6 h,
9 h and 12 h time-points for both pro-proliferative and anti-
apoptotic factors, Fig. S8). Stratification of patients based on AA
and PP signalling in model simulations identified a group of
patients (25% of the Chapuy cohort) for which both high anti-
apoptotic and pro-proliferative (AAPP) signalling was present.
Patients with AAPP signalling (Fig. 4A), using computational
simulations, had worse prognosis than other DLCBL patients in
this cohort. Reflecting trends seen in earlier simulations of DH
DLCBL and gain1q MM (Fig. 2), patients with simultaneous AA and
PP signalling had worse prognosis (25% of patients, median PFS
55 months), than patients with either AA or PP signalling (67% of
patients, median PFS not reached, 52% PFS at 120 months), while
patients with neither AA nor PP signalling (‘other’) had good
prognosis (8% of patients; median PFS not reached, 78% PFS at
120 months, (Fig. 4B)).
We sought to validate these findings using data from larger

independent cohorts. We therefore repeated this analysis in two
additional cohorts: Lacy et al. [8] and the DLBCL subset of the
MSK-IMPACT Heme cohort (2024), generating patient-specific
models for 354 and 276 patients respectively. Of note, both these
studies used targeted sequencing platforms rather than WES and
therefore this analysis would validate whether this approach is
applicable to panel-based sequencing. Due to the size of these
validation datasets, we reduced the size of simulations from
averaging 100 single cells to simulating one single-cell per patient.
Survival analysis showed consistent significant differences
between patients classified as AAPP, compared to all other
patients across both validation cohorts (Fig. 4C, E). Furthermore,
patients predicted to have concurrent anti-apoptotic and pro-
proliferative signals had poor prognosis across all cohorts, while
patients bearing either AA or PP signatures had an intermediate
prognosis and the best prognosis was seen in patients with
neither model-derived signature (Fig. 4B, D, F).
To confirm that mechanistic modelling was truly identifying

emergent signalling properties rather than simply counting the
presence of mutations that impact apoptotic and proliferative
signalling networks, we stratified patients by the presence or
absence of mutations that mapped to the anti-apoptotic, or pro-
proliferative signalling networks (Fig. 4G). Stratifying patients by
simply using the presence or absence of mutations without
simulation failed to consistently predict prognosis across our
discovery and validation cohorts (Fig. 4G). Indeed, patients with
simultaneous mutations impacting apoptotic and proliferative
signalling networks had poor prognosis in our validation cohort,
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no prognostic difference in the Lacy et al. cohort and significantly
better prognosis in the MSK cohort (Fig. 4G). Further stratifying
patients to identify those with multiple mutations impacting these
networks did not improve these predictions (Fig S12). This
demonstrates that simulating mutations within the context of
signalling pathways can differentiate between co-occurring
mutations that do or do not combine deleteriously to confer
poor prognosis, with consistent results across multiple cohorts
and sequencing modalities.
The hazard ratio (HR) for AAPP patients was 2.58 (95%

confidence interval: 1.57–4.220, p < 0.001) in the Lacy cohort and
7.07 (3.73–13.41) in the MSK Cohort, when compared to patients
not assigned AAPP (Fig. S9 and S10). Comparing AAPP stratifica-
tion to other prognostic predictors in the MSK cohort model-
based stratification out-performed stratifying patients based on
whether they were previously treated (HR: 2.1, 95% CI: 1.4–3.1), or
by International Classification of Diseases for Oncology staging

(HR: 1.3, 95% CI: 0.9–1.9, Fig S9). In the Lacy cohort AAPP patients
had worse prognosis than all but the highest IPI category (Fig S10).
Importantly, AAPP patients identified by modelling could not be
identified from mutational burden alone without simulation and
did not differ in their age at diagnosis, IPI score, CNS involvement,
mutation count, number of driver mutations, number of copy
number alterations, ploidy, or any other clinical parameter
available (q= 0.1–1.0 for all clinical metrics) compared to the rest
of the cohort (Fig. S11).

Personalised computational simulations are independent of,
and can be combined with, IPI, stage and genetic clustering,
to improve prognostic power
AAPP patients were identified in all genomic clusters and cell-of-
origin assignments in the discovery cohort and all but one
genomic cluster in the Lacy et al. validation cohort (Fig. 5A, B). We
next tested whether model-based patient stratification could be

Fig. 3 Multiple mutations can create anti-apoptotic and pro-proliferative signalling. A Abundance of MYC mRNA (left) and BCL2 (right)
mRNA in simulations of wild-type (WT) (dash), an IKK-activating mutation (green), a BCL2-activating mutation (blue) and a MYC-activating
mutation (orange) over time. Note that BCL2 mRNA is elevated at t= 0 as the model transitions from steady state phase (with enforced
survival signal) to the dynamic phase (with dynamically-determined survival signal). B Changes in the abundance of Cdh1 protein at 6 h in the
simulations from (A). Each simulated concentration is subtracted from the WT simulation and plotted on a log scale as either an increase or
decrease in abundance. Note that both MYC and IKK activating mutations decrease Cdh1 indicating a more rapid transition from G1 to S
phase. C Changes in the abundance of cCytoc (cytoplasmic cytochrome c, left) protein, and cSmac (cytoplasmic second mitochondria-derived
activator of caspase, right) at 6 h in the simulations from (A). Each simulated concentration is subtracted from the WT simulation and plotted
on a log scale as either an increase or decrease. Note that both BCL2 and IKK activating mutations decrease both cSmac and cCytoc indicating
reduced apoptotic signalling. D Pipeline to incorporate mutational events from genetic sequencing to create patient-specific models. Example
mutational mappings are shown, including the model parameters they modify. The full mapping is provided on in the Github repository
(https://github.com/SiFTW/norrisEtAl/blob/main/muts2Params.csv). E Violin plot showing the concentration of Cdh1 in individual patient
simulations created as shown in (D). Each abundance is standardised and displayed as a z-score. The region with below mean abundance of
Cdh1 is highlighted in green and labelled as PP (pro-proliferative), with example patients highlighted that are within and outside this region.
F Concentration of cSmac (left) and cCytoC (right) in individual patient simulations created as shown in (D). Each abundance is standardised
and displayed as a z-score. The region with below mean abundance of each protein is highlighted in blue and labelled as PP (pro-
proliferative), with example patients highlighted that are within and outside this region. Note that patient 1 (LS3593) is neither AA or PP, 2
(RICOVER_977) is only AA, 3 (RICOVER_126) is AAPP, and 4 (LS2305) is PP only.
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combined with existing prognostically predictive clinical and
genetic measurements. For each cohort we assigned patients to
one of 4 categories (Fig. 5C–H), these were: (1) No AA or PP
signalling states combined with a good prognostic metric (blue),
(2) Good prognostic metric but the presence of one or more AA/

PP signalling states (purple), (3) Poor prognostic metric but
without the combined AAPP signalling state (green), (4) Poor
prognostic marker and AAPP signalling (orange). We tested with
multiple prognostically informative metrics, in all modelled
datasets: International Prognostic Index (IPI, Fig. 5C, E), genetic

Fig. 4 Patient-specific modelling and stratification by pro-proliferation and anti-apoptotic species predicts prognosis of DLBCL patients.
Kaplan-Meier (KM) plots were generated using modelling of patient data derived from Chapuy et al. (A, B), and then validated using Lacy et al. (C, D),
and the MSK IMPACT cohort (E-F). A KM plot comparing progression-free survival (PFS) for DLBCL patients classified as simultaneously anti-apoptotic
(AA) and pro-proliferative (PP)(AAPP) or not (Other), using personalised simulations. B KM plot comparing PFS for DLBCL patients classified as
simultaneously anti-apoptotic and pro-proliferative (AAPP, prange), only one of AA or PP (green), or neither (Other, blue), using personalised
simulations. The proportion of patients in each group is shown on the right. KM plots generated the same way as (A, B) using patients from ref. [8],
stratified using AAPP alone (C), AA and/or PP (D). KM plots generated the same way as (A–C) using patients from the MSK IMPACT Heme cohort
(2024), stratified using AAPP alone (E), AA and/or PP (F). G KM plots, generated without modelling in the indicated cohorts, comparing PFS/OS for
patients with at least one mutation mapping to each of the cell cycle and apoptotic networks (AAPP, orange), with at least one mutation mapping to
either the AA or PP network but not both (AA or PP, green), and patients who don’t have a mutation that maps to either AA or PP signalling networks
(Other, blue). Significance values from log rank test indicated as follows: * P≤ 0.05, ** P≤ 0.01, *** P≤ 0.001.

R. Norris et al.

7

Blood Cancer Journal          (2024) 14:105 



Fig. 5 Computational modelling identifies poor prognosis patients in all cell-of-origin and genetic groupings and can be combined with
multiple establish prognostic metrics to reliably stratify patients. A Grouped bar plot showing the percentage of AAPP and non-AAPP
patients in each cell-of-origin (left) genetic cluster from Chapuy et al. [7] (right). C1-5= cluster 1 to 5 as assigned in the original publicaiton.
B Grouped bar plot showing the percentage of AAPP and non-AAPP patients in each cell-of-origin (left) genetic cluster from Lacy et al. 2020
[8] (right). Cluster names maintained from Lacy et al. Kaplan-Meier analysis of progression-free survival (PFS) in patients from Chapuy et al. (C)
and Lacy et al (E) stratified into: low IPI and neither AA or PP signalling (blue), low IPI with one or more AA/PP signalling states (purple), high IPI
without AAPP signalling (green), high IPI with simultaneous AAPP signalling (orange). Kaplan-Meier analysis of PFS in patients from Chapuy
et al. (D) and Lacy et al. (F) stratified into: good-prognosis genetic cluster and neither AA or PP signalling (blue), good-prognosis genetic
cluster with one or more AA/PP signalling states (purple), poor-prognosis genetic cluster without AAPP signalling (green), poor-prognosis
genetic cluster with simultaneous AAPP signalling (orange). G Kaplan-Meier analysis of overall survival in DLBCL patients from the Memorial
Sloan Kettering (MSK) IMPACT - Heme cohort stratified into: stage ≤ 3 with neither AA or PP signalling (blue), stage ≤ 3 with one or more AA/PP
signalling states (purple), stage 4 without AAPP signalling (green), stage 4 with simultaneous AAPP signalling (orange). H Kaplan-Meier
analysis of overall survival in DLBCL patients from the MSK IMPACT - Heme cohort stratified into: no prior treatment with neither AA or PP
signalling (blue), no prior treatment with one or more AA/PP signalling states (purple), treatment prior to arrival at MSK without AAPP
signalling (green), treatment prior to arrival at MSK with simultaneous AAPP signalling (orange). ABC Activated B Cell, GCB Germinal Centre B
cell, N/A no data available, UNC unclassified, NEC Not Elsewhere Classified, IPI International Prognostic Index, Stage= International
Classification of Diseases for Oncology staging. Poor prognosis clusters in Chapuy et al: 2, 3 and 5. Poor prognosis clusters in Lacy et al: BCL2,
MYD88, NEC, NOTCH2. Low IPI: 1–3 Chapuy et al. and ‘Low’ to ‘Low/Intermediate’ Lacy et al. Significance values from log rank test indicated as
follows: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001.
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clustering (Fig. 5D, F), International Classification of Diseases for
Oncology stage (Fig. 5G), and whether patients were treatment
naïve or not (Fig. 5H). Patients with combined high IPI and AAPP
signalling had dismal prognosis (median PFS 8.4 months in
Chapuy et al. (Fig. 5C); 4 months in Lacy et al. (Fig. 5E)), while
patients without high IPI or any AAPP signalling had favourable
prognosis (median PFS not reaching, 120-month PFS 86% in
Chapuy et al. (Fig. 5C); 73% in Lacy et al. (Fig. 5E)). Patients with
combined poor prognostic clusters and AAPP signalling had the
worst prognosis in both (median PFS 54 months in Chapuy et al.
(Fig. 5C); 7.8 months in Lacy et al. (Fig. 5E)), while patients in good
prognosis genetic clusters without any AAPP signalling had
positive outcomes (medial PFS not reached, 120-month PFS 76%
in Chapuy et al. (Fig. 5C); 75% in Lacy et al. (Fig. 5E)). Stratification
was robust to the inclusion or exclusion of patients that did not
contain a single mutation that mapped to a model parameter (Fig.
S13), and to the techniques (Akaike information criteria or
integrated completed likelihood) used to identify the genomic
clusters (Fig. S14).
Neither IPI nor genetic clustering had been performed in the

MSK IMPACT cohort, however data on whether patients had
received prior treatment and their disease staging were available.
Patients with stage 4 disease and AAPP signalling had poor
prognosis (median overall survival (OS) 27 months, (Fig. 5G)), while
patients with stage 3 or lower and no AAPP signalling had
strikingly good prognosis (median PFS not reached; 96% 60-
month OS, (Fig. 5G)). Similarly, patients whose disease was not
treatment naïve with AAPP signalling had dismal prognosis
(median OS 17.9 months), while patients with treatment naïve
disease and no AAPP signalling had remarkably good prognosis
(median OS not reached; 92% 60-month PFS). Comparing each of
these prognostic stratifications with (Fig. 5C–H) and without (Fig.
S15) personalised computational models demonstrates that
modelling identifies novel groups of patients with strikingly good
and poor prognosis that are not identified without computational
modelling.

DISCUSSION
Predicting which blood cancer patients will respond well to
treatment is key to empowering both patient and clinician in
clinical decision-making. Reliable predictive tools could also
inform clinical trains designed to advance the standard of care
in heterogeneous blood cancers. In this study, we found that
leveraged genomic sequencing data from DLBCL patients to
create personalised simulations that quantified the impact of
mutations on anti-apoptotic and pro-proliferative signalling. This
enabled reliable prognostic prediction across multiple datasets
despite widespread heterogeneity in mutational burden. Mole-
cular clustering of DLBCL has previously identified clusters of
patients that differ in the signalling pathways most impacted by
mutations [7–9]. However, a single mutation may impact multiple
signalling networks and multiple mutations may overcome or
exacerbate each other. For example, gain of 19q increases BAX
(pro-apoptotic), CCNE1 (pro-proliferative) and NFKBIB (pro-apopto-
tic and anti-proliferative). Computational modelling enabled the
net cellular consequence of mutational landscapes of individual
patients to be determined. In particular, our models identified
patients with co-occurring mutations that are simultaneously pro-
proliferative and anti-apoptotic, which could not be determined
from mutational clustering or the presence or absence of specific
mutations. Importantly, this modelling approach identified
patients with dismal, intermediate and good prognosis across
multiple datasets, using either WES or targeted sequencing panels
[34]. While statistical approaches such as artificial intelligence tend
to perform worse on validation data than training data, we found
that results from simulation-enabled stratification became more
significant in larger validation datasets [34]. We believe this

highlights the importance of encoding molecular network knowl-
edge to contextualise mutational information [12, 35]. We also
demonstrate that results from simulations can be combined with
genetic clustering and a variety of clinically used prognostic tools
to identify novel subgroups of patients with both dismal and
favourable prognosis. As such, model-enhanced stratification
could be a valuable tool to inform risk-stratified trials in the future.
There is compelling evidence supporting the adoption of

genetic sequencing at diagnosis of DLBCL to determine prognosis
[36, 37]. All mutations and CNAs modelled in this study affected
recurrently mutated genes, which are profiled by targeted
sequencing panels. As such, the data required for modelling
could be generated at low cost and from fixed diagnostic samples
and potentially even a plasma sample [38]. Furthermore, the
recent development of alternatives to R-CHOP is likely to motivate
utilisation of genomic sequencing data to rationally assign
therapies. There is emerging evidence supporting the addition
of Polatuzumab vedotin for high-risk DLCBL, the addition of
Bortezomib in ABC-DLBCL, or the use of dose-adjusted EPOCH
plus Rituximab for patients expressing high levels of MYC and
BCL2 [39–41]. Factoring in the decreasing costs of sequencing, it
seems likely that molecular profiling will become standard
diagnostic practice in DLBCL, with the aim of precisely identifying
patients that would benefit from an alternative to R-CHOP. Here
we show that computational modelling can improve the ability to
identify such patients without requiring additional data.
Substantial computational work was performed in this study,

much of which would be infeasible to perform in regular clinical
practice. Therefore, when simulating the larger validation datasets,
we tested whether a single simulation of a single-cell could
achieve the same significant prognostic power. These simulations
take a few minutes to complete for each patient on consumer
CPUs. Such analysis could be performed on computers available in
clinical institutions using the code available with this study, and
free Julia software. In future development of an online portal
where sequencing data can be uploaded and analysed remotely
may further expedite clinical use of personalised models.
More work is required if modelling is to become a widely used

tool for personalised medicine approaches. Here we chose not to
create new models, but rather to test the utility of established
computational models of B cells that have not previously been
applied to lymphoma [10, 11]. We performed no parameter fitting,
as these parameters have been accumulated and validated across
multiple cellular contexts and cell types [10, 12, 13, 35]. We
assume that parameters, other than those affected by mutations,
remain consistent between healthy B cells and cancerous B cells.
We also assumed that all mutations within patients have the same
effect size, equivalent to one extra copy or loss of copy of each
gene. The reality will be more complex and we expect that
identifying and quantifying the impact of each mutation on each
gene would improve the utility of the model. Increasing the scope
of the simulations, such that more recurrent mutations can be
directly assigned to model parameters is also likely to improve the
utility of this approach. However, the current model is clearly able
to identify a population of very poor prognostic patients that
would not have been identified using mutational clustering and
cell of origin (COO) alone.
Gene expression-based classifiers have also been used to

identify high-risk DLBCL cases such as molecular high grade
(MHG) DLBCL and dark zone signature (DZsig) DLBCL [42, 43]. Of
note, both of DZsig and MHG patients are almost exclusively
classified by COO classifiers as GC-DLBCL. Model-based classifica-
tion does not enrich for GC-DLBCL when identifying high risk
patients. It also does not enrich for patients with other poor-
prognosis clinical characteristics such as IPI (enriched in MHG),
stage (enriched in MHG and DZSig), or lactate dehyrodgenase
(enriched in DZsig) indicating that simulations enable identifica-
tion of high-risk patients that could not otherwise be identified.
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The B cell receptor and toll-like receptor signalling pathways,
although not explicitly modelled here, converge on NEMO:IKK and
are the target of new therapeutic advances and recurrent
mutations. Similarly, epigenetic regulators such as EZH2 are
recurrently mutated but not explicitly modelled. Further work is
also required to build on this model and simulate how treatment
may perturb biological networks harbouring mutations. Such
approaches may provide mechanistic insight into the develop-
ment of relapsed DLBCL and provide insight into second-line
treatments. Simulating the effect of targeted inhibitors in the
patient-specific simulations presented here may provide insights
into which patients will respond to alternatives to R-CHOP,
however, limited clinical data is available to validate such
predictions.
Performing large-scale computational simulations can be

computationally challenging and require substantial computa-
tional resources given the size and complexity of the molecular
networks simulated here (194 equations, and 563 parameters).
Previous work has applied logical modelling (molecular compo-
nents are discretised into high/medium/low) to B cell lymphoma
to overcome this challenge [44]. Here, we found a continuous
modelling approach was able to identify many gene dose-
dependent effects that could not be identified with logical
modelling, including how chromosomal gain and amplification
confer distinct prognoses. Despite the requirement for substantial
computational calculation, we found that simulating just 6 hours
of a single B cell per patient (simulating 100 cells required
~30minutes of real-word time on a 2.1 GHz CPU) enabled us to
stratify patients. The ability to perform short simulations is
enabled by experimental results that demonstrate that B cell
molecular network states are rapidly established and reliably
inherited across multiple generations of cell division [10]. It is likely
that clinical implementations of computational modelling could
provide additional insight based on simulations without specia-
lised hardware and without delaying treatment.
Beyond DLBCL and MM, the modelling methodology described

here may have utility in other tumour types when mutational data
and comprehensive, experimentally validated, simulations are
available. Many of the recurrent mutational events in DLBCL and
MM are common cancer-associated mutations. MYC deregulation
is involved in the development of a wide variety of cancers [45],
BCL2 is dysregulated in many malignancies including breast
cancer and gastric carcinoma [46, 47], and NF-κB is implicated in
numerous cancers [48]. A mathematical model, simulating 17
cancer types, estimated that the number of carcinogenic
mutations (hits) varies from two to eight depending on the
cancer type [49]. With the increasing availability of cancer genome
data and the evolution of computational methods to identify the
mutational burden of cancer patients, the approach described
here is rapidly becoming feasible in numerous cancers. We expect
these approaches to be most impactful in mutationally hetero-
geneous cancers, such as breast cancer, where heterogeneity
challenges early diagnosis, treatment selection and prognosis
prediction [50].
The ultimate goal of computational systems biology approaches

such as the one presented here is to enable personalised medicine
by using models to identify the right drugs for the right patients.
Modern sequencing techniques provide an abundance of data,
but we have yet to fully utilise it. Computational models with the
power to translate patient-specific mutation data into persona-
lised prognostic and treatment predictions may empower the
exploitation of these data to enable truly personalised medicine
approaches.

DATA AVAILABILITY
The datasets and computer code produced in this study are available in the following
databases: Modelling computer scripts: GitHub (https://github.com/SiFTW/norrisEtAl).

REFERENCES
1. Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, Martincorena I,

et al. Genomic landscape and chronological reconstruction of driver events in
multiple myeloma. Nat Commun. 2019;10:3835.

2. Mosquera Orgueira A, Ferreiro Ferro R, Díaz Arias J, Aliste Santos C, Antelo
Rodríguez B, Bao Pérez L, et al. Detection of new drivers of frequent B-cell
lymphoid neoplasms using an integrated analysis of whole genomes. PLoS One.
2021;16:e0248886.

3. Cheah C, Herbert K, O’rourke K, Kennedy GA, George A, Fedele P, et al. A mul-
ticentre retrospective comparison of central nervous system prophylaxis strate-
gies among patients with high-risk diffuse large B-cell lymphoma. Br J cancer.
2014;111:1072–9.

4. Hartert KT, Wenzl K, Krull JE, Manske M, Sarangi V, Asmann Y, et al. Targeting of
inflammatory pathways with R2CHOP in high-risk DLBCL. Leukemia
2021;35:522–33.

5. Sehn LH, Salles G. Diffuse Large B-Cell Lymphoma. N. Engl J Med.
2021;384:842–58.

6. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use
of molecular profiling to predict survival after chemotherapy for diffuse large-B-
cell lymphoma. N. Engl J Med. 2002;346:1937–47.

7. Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular
subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic
mechanisms and outcomes. Nat Med. 2018;24:679–90.

8. Lacy SE, Barrans SL, Beer PA, Painter D, Smith AG, Roman E, et al. Targeted
sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological
Malignancy Research Network report. Blood 2020;135:1759–71.

9. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al.
Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl J Med.
2018;378:1396–407.

10. Mitchell S, Roy K, Zangle TA, Hoffmann A. Nongenetic origins of cell-to-cell
variability in B lymphocyte proliferation. Proc Natl Acad Sci USA.
2018;115:E2888–97.

11. Roy K, Mitchell S, Liu Y, Ohta S, Lin Y-s, Metzig MO, et al. A regulatory circuit
controlling the dynamics of NFκB cRel transitions B cells from proliferation to
plasma cell differentiation. Immunity 2019;50:616–28.e6.

12. Mitchell S, Tsui R, Tan ZC, Pack A, Hoffmann A. The NF-κB multidimer system
model: a knowledge base to explore diverse biological contexts. Sci Signal.
2023;16:eabo2838.

13. Shokhirev MN, Almaden J, Davis-Turak J, Birnbaum HA, Russell TM, Vargas JA,
et al. A multi-scale approach reveals that NF-κB cRel enforces a B-cell decision to
divide. Mol Syst Biol. 2015;11:783.

14. Cloete I, Smith VM, Jackson RA, Pepper A, Pepper C, Vogler M, et al. Computa-
tional modeling of DLBCL predicts response to BH3-mimetics. NPJ Syst Biol Appl.
2023;9:23.

15. Mitchell S, Mercado EL, Adelaja A, Ho JQ, Cheng QJ, Ghosh G, et al. An NFκB
activity calculator to delineate signaling crosstalk: type I and II interferons
enhance NFκB via distinct mechanisms. Front Immunol. 2019;10:1425.

16. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to numerical
computing. SIAM Rev. 2017;59:65–98.

17. Rackauckas C, Nie Q. Differentialequations. jl–a performant and feature-rich
ecosystem for solving differential equations in Julia. J Open Res Softw. 2017;5:15.

18. Loriaux PM, Tesler G, Hoffmann A. Characterizing the relationship between
steady state and response using analytical expressions for the steady states of
mass action models. PLoS Comput Biol. 2013;9:e1002901.

19. Schmidt TM, Barwick BG, Joseph N, Heffner LT, Hofmeister CC, Bernal L, et al. Gain
of Chromosome 1q is associated with early progression in multiple myeloma
patients treated with lenalidomide, bortezomib, and dexamethasone. Blood
Cancer J. 2019;9:94.

20. Ptashkin RN, Ewalt MD, Jayakumaran G, Kiecka I, Bowman AS, Yao J, et al.
Enhanced clinical assessment of hematologic malignancies through routine
paired tumor and normal sequencing. Nat Commun. 2023;14:6895.

21. Hawkins ED, Turner ML, Dowling MR, Van Gend C, Hodgkin PD. A model of
immune regulation as a consequence of randomized lymphocyte division and
death times. Proc Natl Acad Sci. 2007;104:5032–7.

22. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate
cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.

23. Heinzel S, Binh Giang T, Kan A, Marchingo JM, Lye BK, Corcoran LM, et al. A Myc-
dependent division timer complements a cell-death timer to regulate T cell and B
cell responses. Nat Immunol. 2017;18:96–103.

24. Dowling MR, Kan A, Heinzel S, Zhou JH, Marchingo JM, Wellard CJ, et al. Stretched
cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA.
2014;111:6377–82.

25. Cai C, Hu X, Dai P, Zhang T, Jiang M, Wang L, et al. c-Myc regulates neural stem
cell quiescence and activation by coordinating the cell cycle and mitochondrial
remodeling. Signal Transduct Target Ther. 2021;6:306.

R. Norris et al.

10

Blood Cancer Journal          (2024) 14:105 

https://github.com/SiFTW/norrisEtAl


26. Cheng Y, Luo H, Izzo F, Pickering BF, Nguyen D, Myers R, et al. m(6)A RNA
methylation maintains hematopoietic stem cell identity and symmetric com-
mitment. Cell Rep. 2019;28:1703–16.e6.

27. Afifi MM, Crncec A, Cornwell JA, Cataisson C, Paul D, Ghorab LM, et al. Irreversible
cell cycle exit associated with senescence is mediated by constitutive MYC
degradation. Cell Rep. 2023;42:113079.

28. Meriranta L, Pasanen A, Alkodsi A, Haukka J, Karjalainen-Lindsberg M-L, Leppä S.
Molecular background delineates outcome of double protein expressor diffuse
large B-cell lymphoma. Blood Adv. 2020;4:3742–53.

29. El-Sharkawi D, Sud A, Prodger C, Khwaja J, Shotton R, Hanley B, et al. A
retrospective study of MYC rearranged diffuse large B-cell lymphoma in
the context of the new WHO and ICC classifications. Blood. Cancer J.
2023;13:54.

30. Schmidt TM, Fonseca R, Usmani SZ. Chromosome 1q21 abnormalities in multiple
myeloma. Blood Cancer J. 2021;11:83.

31. Hanamura I. Gain/amplification of chromosome arm 1q21 in multiple myeloma.
Cancers. 2021;13:256.

32. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, et al. Frequent
gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluores-
cence in situ hybridization: incidence increases from MGUS to relapsed myeloma
and is related to prognosis and disease progression following tandem stem-cell
transplantation. Blood 2006;108:1724–32.

33. Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, et al. OncoKB: a
precision oncology knowledge base. JCO Precis Oncol. 2017;1:1–16.

34. Xu-Monette ZY, Zhang H, Zhu F, Tzankov A, Bhagat G, Visco C, et al. A refined cell-
of-origin classifier with targeted NGS and artificial intelligence shows robust
predictive value in DLBCL. Blood Adv. 2020;4:3391–404.

35. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB sig-
naling module: temporal control and selective gene activation. Science
2002;298:1241–5.

36. Wright GW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, et al. A
probabilistic classification tool for genetic subtypes of diffuse large B cell lym-
phoma with therapeutic implications. Cancer cell. 2020;37:551–68.e14.

37. Morin RD, Arthur SE, Hodson DJ. Molecular profiling in diffuse large B‐cell lym-
phoma: why so many types of subtypes? Br J Haematol. 2022;196:814–29.

38. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AF, Esfahani MS, et al. Distinct
biological subtypes and patterns of genome evolution in lymphoma revealed by
circulating tumor DNA. Sci Transl Med. 2016;8:364ra155–364ra155.

39. Davies AJ, Barrans S, Stanton L, Caddy J, Wilding S, Saunders G, et al. Differential
efficacy from the addition of bortezomib to R-CHOP in diffuse large B-cell lym-
phoma according to the molecular subgroup in the REMoDL-B study with a
5-year follow-up. J Clin Oncol. 2023;41:2718–23.

40. Dodero A, Guidetti A, Tucci A, Barretta F, Novo M, Devizzi L, et al. Dose-
adjusted EPOCH plus rituximab improves the clinical outcome of young
patients affected by double expressor diffuse large B-cell lymphoma. Leu-
kemia 2019;33:1047–51.

41. Tilly H, Morschhauser F, Sehn LH, Friedberg JW, Trněný M, Sharman JP, et al.
Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N.
Engl J Med. 2022;386:351–63.

42. Alduaij W, Collinge B, Ben-Neriah S, Jiang A, Hilton LK, Boyle M, et al. Molecular
determinants of clinical outcomes in a real-world diffuse large B-cell lymphoma
population. Blood. J Am Soc Hematol. 2023;141:2493–507.

43. Sha C, Barrans S, Cucco F, Bentley MA, Care MA, Cummin T, et al. Molecular high-
grade B-cell lymphoma: defining a poor-risk group that requires different
approaches to therapy. J Clin Oncol. 2019;37:202.

44. Thobe K, Konrath F, Chapuy B, Wolf J. Patient-specific modeling of diffuse large
B-cell lymphoma. Biomedicines. 2021;9:1655.

45. Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, et al. MYC
deregulation in primary human cancers. Genes. 2017;8:151.

46. Joensuu H, Pylkkänen L, Toikkanen S. Bcl-2 protein expression and long-term
survival in breast cancer. Am J Pathol. 1994;145:1191–8.

47. Inada T, Kikuyama S, Ichikawa A, Igarashi S, Ogata Y. Bcl-2 expression as a prognostic
factor of survival of gastric carcinoma. Anticancer Res. 1998;18:2003–10.

48. Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death-a
new approach to cancer therapy. J Clin Invest. 2005;115:2625–32.

49. Anandakrishnan R, Varghese RT, Kinney NA, Garner HR. Estimating the number of
genetic mutations (hits) required for carcinogenesis based on the distribution of
somatic mutations. PLoS Comput Biol. 2019;15:e1006881.

50. Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, et al. Breast cancer heterogeneity
and its implication in personalized precision therapy. Exp Hematol Oncol.
2023;12:3.

ACKNOWLEDGEMENTS
The authors would like to thank Ulf Klein and Jana Wolf for critical discussions and
Eleanor Jayawant for providing critical input into the manuscript. Funding for SM:
Leukaemia UK John Goldman Fellowship (2020/JGF/003) and UKRI Future Leaders
Fellowship (MR/T041889/1). Funding for AP: MRC Research Grant (MR/V009095/1).
Funding for CP: Blood Cancer UK (23004).

AUTHOR CONTRIBUTIONS
RN and SM performed computational analysis and modelling. RN, CP, AP and SM
conceptualised the study, and EM, JJ and TC conceptualised Fig. 3. AP, CP, FS and SM
supervised the project. All authors contributed to the article, critically revised the
manuscript, and approved the submitted version.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41408-024-01090-y.

Correspondence and requests for materials should be addressed to Simon Mitchell.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

R. Norris et al.

11

Blood Cancer Journal          (2024) 14:105 

https://doi.org/10.1038/s41408-024-01090-y
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Patient-specific computational models predict prognosis in B cell lymphoma by quantifying pro-proliferative and anti-apoptotic signatures from genetic sequencing data
	Introduction
	Materials and methods
	Model generation
	Cell cycle and apoptosis modelling
	Multi-scale model
	Modelling patients
	Downstream analysis

	Results
	Simulating individual mutations recapitulates experimental measurements
	Multi-scale modelling predicts that mutations that converge on apoptosis and the cell cycle confer poor prognosis in blood cancer patients
	A computational pipeline enables simulations of heterogeneous patients from WES data by mapping mutations to simulation parameters
	Personalised patient simulations identify an anti-apoptotic and pro-proliferative subgroup of patients with poor prognosis
	Personalised computational simulations are independent of, and can be combined with, IPI, stage and genetic clustering, to improve prognostic power

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




