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NF-kB fingerprinting reveals
heterogeneous NF-kB
composition in diffuse large
B-cell lymphoma

Eleanor Jayawant, Arran Pack, Heather Clark, Emma Kennedy,
Ankur Ghodke, John Jones, Chris Pepper,
Andrea Pepper and Simon Mitchell*

Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School,
Brighton, United Kingdom
Introduction: Improving treatments for Diffuse Large B-Cell Lymphoma (DLBCL)

is challenged by the vast heterogeneity of the disease. Nuclear factor-kB (NF-kB)
is frequently aberrantly activated in DLBCL. Transcriptionally active NF-kB is a

dimer containing either RelA, RelB or cRel, but the variability in the composition

of NF-kB between and within DLBCL cell populations is not known.

Results: Here we describe a new flow cytometry-based analysis technique

termed “NF-kB fingerprinting” and demonstrate its applicability to DLBCL cell

lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We

find each of these cell populations has a unique NF-kB fingerprint and that widely

used cell-of-origin classifications are inadequate to capture NF-kB
heterogeneity in DLBCL. Computational modeling predicts that RelA is a key

determinant of response to microenvironmental stimuli, and we experimentally

identify substantial variability in RelA between and within ABC-DLBCL cell lines.

We find that when we incorporate NF-kB fingerprints andmutational information

into computational models we can predict how heterogeneous DLBCL cell

populations respond to microenvironmental stimuli, and we validate these

predictions experimentally.

Discussion: Our results show that the composition of NF-kB is highly

heterogeneous in DLBCL and predictive of how DLBCL cells will respond to

microenvironmental stimuli. We find that commonly occurring mutations in the

NF-kB signaling pathway reduce DLBCL’s response to microenvironmental

stimuli. NF-kB fingerprinting is a widely applicable analysis technique to

quantify NF-kB heterogeneity in B cell malignancies that reveals functionally

significant differences in NF-kB composition within and between cell

populations.

KEYWORDS

systems biology, DLCBL, NFkB, TME (tumor microenvironment), math modeling,
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Introduction

B cell lymphoma is the most common lymphoid malignancy

(1). Profiling Diffuse Large B-cell Lymphoma (DLBCL) using gene

expression microarray technology revealed two subtypes of the

disease, activated B cell (ABC) and germinal-center (GC), which

aligned with a distinct cell of origin (COO) (2, 3). More recent

molecular subtyping through genomic profiling, in largely

simultaneous studies by several groups, found a remarkable

agreement on 5-8 genomic subtypes of the disease (2, 4–6). These

classifications are prognostically and biologically informative but

have not yet translated into stratified treatments (7, 8). Even within

these studies there exists substantial heterogeneity in mutational

profile, gene expression, and disease outcome suggesting we are still

only scratching the surface of the heterogeneity in DLBCL.

In lymphoma, many recurring mutations and stimuli in the

tumor microenvironment (TME) converge on Nuclear factor-kB
(NF-kB) signaling (9, 10). Within lymph nodes, activated CD4+ T

cells express CD40 ligand (CD40L), which activate the non-

canonical NF-kB pathway, promoting B cell survival (11).

Through this pathway, CD40 activation contributes to

oncogenesis and drug-resistance in B cell malignancies (12–14).

In DLBCL, CD40 expression is a marker of inflammation in the

TME and correlates with improved prognosis but does not correlate

with COO subtypes (15, 16). TNFSF13/APRIL secreted by

neutrophils in the TME also activates the non-canonical NF-kB
pathway in a subset of DLBCL and correlates with a poor prognosis

(17). Similarly, BAFF activates the non-canonical NF-kB pathway,

and high serum BAFF correlates with poor prognosis in DLBCL

patients (18). BCR and TLR signaling also activate the canonical

NF-kB pathways in DLBCL. BCR signaling is commonly activated

by mutations in ABC-DLBCL, and potentially by autoantigens (19,

20). Microenvironmentally-meditated TLR9 activation signaling to

NF-kB has also been shown to promote DLBCL progression (21).

In addition to TME activation, NF-kB is frequently aberrantly

activated in lymphoid malignancies through genomic alterations

(10, 22–28) and tumor viruses such as EBV (29, 30). Activation of

NF-kB in B cells is pro-survival and pro-proliferative (31, 32).

Indeed, through combining computational modeling and single-cell

experimental analysis, molecular variability in NF-kB signaling has

been shown to contribute to variability in proliferation outcomes in

B cell populations (32–37). While inhibition of NF-kB can kill

DLBCL cells, the ubiquitous role of NF-kB creates severe on-target

toxicities, which precludes the clinical use of broad NF-kB
inhibitors (38, 39).

NF-kB signaling is not a single pathway mediating the activity

of a single transcription factor. In fact, NF-kB signaling activates

two distinct pathways (canonical and non-canonical), and NF-kB
itself consists of five proteins that can form 15 different dimeric

transcription factors (40). Three NF-kB family members (RelA,

RelB and cRel) are activators of transcription, whereas two family

members (p50 and p52) form heterodimers with the

transcriptionally active proteins (41). The most transcriptionally

active, well-studied, and relevant NF-kB heterodimers in the

context of DLBCL are RelA:p50 and cRel:p50, which are
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regulated by the canonical pathway, and RelB:p52 which is

regulated by the non-canonical pathway (40). While DLBCL

research has largely focused on total NF-kB activation resulting

from mutations within these pathways, there is growing evidence

that the composition of NF-kB within DLBCL is functionally

important (42, 43). Canonical pathway activation of both RelA

and cRel has been identified, along with non-canonical pathway

activation of p52 also occurring in ~25% of DLBCL cases (10, 44,

45). Much of this heterogeneity in NF-kB does not align with

known subgroups of DLBCL identified by gene expression or

genetic profiling (44). The source of heterogeneity in the NF-kB
composition of DLBCL is unknown but likely results from a

combinat ion of mutat ional heterogenei ty , epigenet ic

heterogeneity, and heterogeneity in the microenvironmental

stimuli that tumor cells are exposed to. Genetic profiling of

DLBCL subtypes found a greater frequency of NF-kB-activating
mutations in ABC- as opposed to GC-DLBCL (46, 47). It is unclear

whether variability in NF-kB dimer composition can be explained

by cell-of-origin, whether variability exists between cell populations

of the same cell-of-origin, or whether variability exists even within

well-defined DLBCL cell populations such as cell lines. Given the

striking molecular heterogeneity that permeates all aspects of

DLBCL biology, understanding heterogeneity in NF-kB signaling

may unlock pathway- and subunit-specific therapeutic approaches.

Here we profile the heterogeneous state of NF-kB signaling in B

cell lymphoma with single-cell resolution to quantify heterogeneity

in the composition of NF-kB in DLBCL. We use this data to create

computational simulations with single cell resolution, which enable

us to predict how mutations impact lymphoma’s heterogeneous

response to the TME.
Materials and methods

Experimental methods

Cell counting
Cell counts and viability were determined by trypan blue

exclusion using a 1:1 mixture of cell suspension to 0.4% trypan

blue so lut ion (Invi t rogen) , and a Countess I I I ce l l

counter (ThermoFisher).

Culture conditions for DLBCL cell lines
Three DLBCL cell lines (RIVA, U2932 and HBL-1) were

maintained in liquid culture at a density of 0.5 × 106 cells/ml. All

cell lines were maintained in complete medium (CM) composed of

RPMI (Sigma) supplemented with 10% heat-inactivated FBS

(Sigma-Aldrich), 1% L-glutamine (Sigma) and 1% penicillin and

streptomycin (Sigma) and were cultured at 37°C in 5% CO2

atmospheric conditions.

Stimulation of TLR9 signaling with TLR9 agonist
Cell lines were seeded into a 96-well round-bottomed plate at a

density of 3 × 105 cells/ml in 150 µL RPMI CM and stimulated for

45 minutes or 2 hours with 1 µM ODN 2006 (Invivogen) at 37°C/
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5% CO2. Following incubation, the contents of each well were

transferred to tubes and washed with 1 mL warm Dulbecco’s

Phosphate Buffered Saline (PBS; Sigma-Aldrich) for 7 minutes at

350 ×g.

Processing of DLBCL patient sample
Lymph core biopsy was obtained from a patient attending

Eastbourne District General Hospital with informed consent and in

accordance with the ethical approval granted to Dr John Jones (REC #:

22/SC/0094). The core was collected into a tube containing RPMI CM,

and then transferred into the well of a 6-well plate with 1 mL fresh

RPMI CM. The cells were gently disaggregated using a scalpel, and

large non-cellular clumps were removed by filtering through a 50 µm

mesh. The plate was washed with 1 mL RPMI CM. The cell

suspension was centrifuged at 300 ×g for 7 minutes, the supernatant

was aspirated, and the pellet was resuspended in fresh RPMI CM.

Cells were frozen down to -80°C in a CoolCell Container (Corning) at

a minimum density of 5 × 106 cells/tube in FBS + 10%DMSO (Sigma-

Aldrich) and transferred to liquid nitrogen storage within 24 hours.

Prior to staining, a vial of sample was removed from liquid

nitrogen staining and defrosted in a water bath (37°C). Once

defrosted, the sample was washed in RPMI CM for 5 minutes at

300 ×g. The supernatant was discarded, and the pellet was

resuspended in RPMI CM. The cell suspension was passed

through a 50 µm mesh to remove aggregated cells, and the cell

count and viability was determined.
Isolation of human PBMCs from healthy blood
20 mL of blood was collected from a healthy volunteer and the

peripheral blood mononuclear cells (PBMCs) were isolated. Blood

was layered on top of warm Histopaque (Sigma-Aldrich), and the

tube was centrifuged at 900 ×g with deceleration set to minimum.

The buffy coat layer was carefully removed and transferred to a

clean tube and was washed three times in PBS at 350 ×g for 5

minutes. The supernatant was aspirated, and the cell pellet was

resuspended in in RPMI CM and counted as previously described.

The isolated PBMCs were immediately stained as described below.

Flow cytometric quantification of NF-kB subunits
Surface and intracellular labeling were performed using a method

adapted fromManso andMedina (48). In brief, 1 × 107 cells/mL were

washed with an excess of cold Cell Staining Buffer (CSB; BioLegend)

at 4°C at 350 ×g for 5 minutes. The supernatant was discarded, and

the pellet was resuspended in 300 µl of cold CSB, mixed well and

incubated for 20 minutes at 4°C to reduce non-specific binding. After

incubation, the cell suspension was washed with an excess of cold

CSB for 5 minutes at 350 ×g and the supernatant aspirated. The cell

pellet was resuspended in PBS up to 1 × 107 cells/mL; and 3 × 105 cells

(cell lines), 4 × 105 cells (primary DLBCL cells) or 1 × 106 cells

(healthy control) were stained per tube in duplicate (antibodies in

Table 1). Surface labeling was as per the antibody manufacturer’s

instructions. Intracellular staining was then performed using the

Cyto-Fast Fix/Perm Buffer Set (BioLegend) in accordance with the

manufacturer’s instructions. Samples were analyzed by flow

cytometry using a CytoFLEX LX flow cytometer (Beckman Coulter).
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Analysis of flow cytometric data
Gating was performed using a bespoke analysis pipeline

developed using Python v3.8 and CytoFlow (https://github.com/

cytoflow/cytoflow) or using FlowJo™ v10.8 Software (BD Life

Sciences). Initially, samples were gated based on their forward

scatter area (FSC-A) vs. side scatter area (SSC-A) to select for

lymphocytes and remove debris and dead cells. Next, the

lymphocyte population was gated based on their forward scatter

height (FSC-H) vs. FSC-A, to select for single cells. Finally, where

there were multiple populations of lymphocytic cells (i.e., primary

samples), B cells were gated as a CD20high population.

Histogram plots were prepared using Matplotlib (49) and Seaborn

(50). Median fluorescence intensity (MFI) of the B cell population for

each fluorophore was calculated. This value was normalized to that of

the isotype control value for each fluorophore. Statistical analyses were

performed using Python v3.8. Unless otherwise stated, results are

presented as mean (+/- standard deviation).

Generation of “NF-kB fingerprints”
For each single cell, the isotype control MFI was subtracted

from each antibody’s expression value, and data across multiple cell

lines was combined and standardized to a z-distribution, such that it

has a mean of 0 and a standard deviation of 1. Contour plots were

generated using Matplotlib (49) and Seaborn (50).

Preparation of cell lysates
For each cell line, 8 × 106 cells were counted as previously

described, and centrifuged at 1500 rpm for 10 minutes at 4°C. The

supernatant was removed, and the pellet was resuspended in ice cold

PBS, before being centrifuged again for a further 10 minutes. Ice cold

Pierce RIPA buffer (Thermo Scientific) prepared with Halt protease
TABLE 1 Antibody panel for flow cytometry.

Antibody Conjugate and clone Supplier

Anti-CD20 Pacific Blue 2H7 BioLegend

Anti-CD38 Brilliant Violet 785 HIT2 BioLegend

Anti-NF-kB p65 APC 14G10A21 BioLegend

Anti-phospho-NF-kB p65
(Ser529)

PE-Cyanine7 B33B4WP eBioscience

Anti-RelB Coralite 488 polyclonal Proteintech

Anti-cRel PE G-7 Santa Cruz

Isotype control Conjugate and clone Supplier

Mouse IgG2a kappa Pacific Blue MPC-11 BioLegend

Mouse IgG1 kappa Brilliant Violet 785 MOPC-
21

BioLegend

Mouse IgG2b kappa APC MPC-11 BioLegend

Mouse IgG2a kappa PE-Cyanine7 eBM2a eBioscience

Rabbit IgG Unconjugated* polyclonal Proteintech

Mouse IgG1 kappa PE Santa Cruz
fro
*conjugated to CoraLite 488 in-house using FlexAble CoraLite 488 Antibody Labeling Kit for
Rabbit IgG (Proteintech).
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inhibitor cocktail (Thermo Scientific) and 0.5 M EDTA (Thermo

Scientific) was added to each cell pellet and incubated on ice for 10

minutes. Each sample was sonicated for 3 cycles (30 seconds on, 30

seconds off) using a Bioruptor Pico sonication device (Diagenode) at

4°C, vortexing after the second cycle. Finally, each sample was

centrifuged once more at 14000 rpm for 10 minutes at 4°C to

remove any remaining insoluble material and the supernatant was

aliquoted. Cell lysates were stored at -80°C until required.

Total protein quantification by BCA assay
Total levels of proteins in cell lysates were assessed in duplicate

in a 96-well plate using a Pierce BCA Protein Assay Kit (Thermo

Scientific) in accordance with the manufacturer’s instructions.

Bovine serum albumin standards in triplicate were used to

prepare a standard curve of protein concentration (µg/mL) vs.

absorbance. Protein quantification was performed using a BioTek

Synergy HTX multimode reader (Agilent) at 565 nm.
Quantification of NF-kB subunits using western
blotting

Samples were prepared with 40 µg of protein made up with Bolt

LDS sample buffer (Invitrogen) and Bolt sample reducing agent

(Invitrogen). Prior to gel electrophoresis, each prepared sample was

heated to 70°C for 10 minutes and centrifuged at 10000 rpm for 10

minutes. Gel electrophoresis was performed at 200 V for 30 minutes,

using Bolt 4-12% Bis-Tris pre-cast mini gels (Invitrogen) and Bolt

MES SDS running buffer (Invitrogen). Proteins were transferred to a

PVDF membrane using iBlot Transfer Stacks (Invitrogen) and an

iBlot 2 Gel Transfer Device (Invitrogen) according to the

manufacturer’s instructions. Following transfer, the membrane was

washed in ultrapure water twice and total protein was stained using

No-Stain Protein Labeling Reagent (Invitrogen) in accordance with

the manufacturer’s recommendations. Total protein was visualized at

600 nm using an Odyssey Fc Imager (Li-Cor).

Detection of proteins of interest was performed using the iBind

Flex system (Invitrogen) and incubated for 2.5 hours. Antibodies

used are listed in Table 2. The membrane was washed in water for 5

minutes and visualized at 700 and 800 nm using the Odyssey Fc

Imager. Loading was normalized to total protein stain using

Empiria Studio (Li-Cor).
Computational modeling

Computational model reaction, parameter and rate law tables

are available, along with Jupyter Notebooks to generate all

computational modeling figures at https://github.com/SiFTW/
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NFkBModel. Computational models were all created from tables

of parameters, reactions and rates laws using bespoke Python code

(https://github.com/SiFTW/CSV2JuliaDiffEq), and the generated

Julia files that encoded a system of ordinary differential equations

was solved using Julia Differential Equations (51, 52). Full details

regarding computational modeling methods are provided in the

Supplementary Materials.

Simulations of cell populations were performed using

distributions of parameters representing expression and

degradation of modeled molecular species as described previously

with 11% coefficient of variance sampled from a normal distribution

around the published parameter value truncated at 0 (32). Each cell

was run for a steady state phase with fixed input with the final

concentrations of the steady state phase being used as input to the

time course phase in which dynamic inputs are used (NEMO/IKK

activity in the NF-kB model, and TLR activity in the extended

model). All simulations were performed in 25 cells except for basal

NF-kB fingerprints which were performed in 1000 cells.

Computational models with increased cRel, RelA and RelB were

created by increasing the parameter for expression of these proteins by

10-fold. This parameter increase was performed prior to distribution

of expression and degradation parameters to introduce cell-to-cell

variability, and these increases were maintained throughout the steady

state and time course simulation phases. All other parameters were as

published (54). To create cell lines based on gene expression values,

the expression rate of NF-kB subunits were standardized to zero mean

and unit variance, across a library of DLBCL cell lines (53). The

expression rate of each NF-kB subunit was scaled using 10scaling_val,

such that the average cell lines would have the parameter scaled by

100 = 1 (no change) and a cell with expression 1 standard deviation

higher than average will have the parameter scaled by 101 = 10 (10-

fold increase). Computational models of NF-kB fingerprints were

created by manually adjusting the expression of RelA and RelB to

recapitulate the experimentally obtained NF-kB fingerprints. MYD88,

CD79B and TAK1 mutations were simulated by adjusting the rate of

MYD88 self-activation, the basal BCR activation, and the rate of TAK1

activation respectively (see Supplementary Materials).
Results

Computational modeling predicts that
heterogeneous basal expression of NF-kB
RelA alters response to
microenvironmental stimuli

Analysis of published gene expression data generated on a

library of 21 DLBCL lines (53) shows highly heterogeneous and
TABLE 2 Antibodies used for western blotting.

Primary antibody Clone Supplier Secondary antibody Conjugate Supplier

Anti-NF-kB p65 D14E12 Cell Signaling Goat anti-Rabbit IgG (H+L) Alexa Fluor Plus 800 Invitrogen

Anti-RelB Polyclonal Proteintech

Anti-cRel JM72-93 Invitrogen
fro
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uncorrelated gene expression of NF-kB signaling components cRel,

RelA and RelB (gene names REL, RELA and RELB respectively,

Figure 1A). To predict how heterogeneous expression of these NF-

kB transcription factor components within DLBCL might affect the

composition of NF-kB dimers and how the disease responds to its

microenvironment, we used an established computational model of

NF-kB signaling in B cells (54, 56). This model includes both

canonical and non-canonical signaling pathways, along with

explicitly simulating the many possible NF-kB dimers that can

form from the 5 NF-kB monomers (Figure 1B). Simulating the

impact of an increase in the basal expression of RelA, cRel and RelB

on steady state NF-kB composition and the response of NF-kB to

TME-mediated canonical pathway activation indicated that the

steady-state level of nuclear RelA:p50 would be similar despite

these changes (Figure 1C, left). Simulations predicted that only

increased RelA substantially altered the response to the TME

(Figure 1C, right). Interestingly, while the model predicted that

steady state cRel:p50 may be substantially altered by increased cRel

expression (Figure 1D, left), the nuclear activity of cRel:p50 in

response to the TME is unchanged by large expression changes in

NF-kB components (Figure 1D, right). These simulations predict

that only increased RelA could exceed the inherent cell-to-cell

variability within the cell population and substantially alter NF-

kB response to the TME (Figure 1C).
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Computational models, parameterized by
published gene expression data, predict
that DLBCL cell lines with the same cell-
of-origin can have distinct responses to
the TME

Aberrant NF-kB activity is frequently seen in ABC-DLBCL

(10), and ABC-DLBCL cell lines have higher expression of NF-kB
target genes NFKB1 and NFKB2 in published gene expression data

[Figure 2A, (53)]. To establish whether heterogeneous gene

expression of multiple NF-kB components can confer distinct

basal NF-kB activation and response to TME, we simulated the

RIVA and U2932 cell lines, which show similar expression of NF-

kB target genes and are both ABC-DLBCL cell lines. Published gene

expression values were incorporated into the computational model

to create cell-line-specific models that were simulated to steady state

followed by canonical pathway activation (Figures 2B, C). These

simulations predict elevated basal nuclear RelA:p50 activity in

U2932 cell lines, and an increased response to the TME in U2932

cell lines (Figure 2B). Differences in cRel:p50 between these cell

lines were predicted to be smaller than differences in RelA:p50 both

at steady state and in response to stimuli (Figures 2B, C). These

simulations predicted heterogeneity in RelA abundance may

substantially alter the composition of NF-kB and the sensitivity of
A B

D

C

FIGURE 1

Computational modeling predicts that expression of NF-kB subunit RelA determines response to the tumor microenvironment in DLBCL. (A)
Expression of RELA (encoding RelA), REL (encoding cRel) and RELB (encoding RelB) in published gene expression data (GSE103934) for a library of
DLBCL cell lines (53). Some well-studied cell lines are highlighted with distinct colors. (B) Schematic of the scope of the computational model used
here (54), which includes both canonical and non-canonical NF-kB signaling and dimer formation between 5 NF-kB component proteins. (C, D)
Nuclear RelA:p50 (C) and cRel:p50 (D) concentration in computational simulations using model with no change in parameters, and a 10-fold
increase in RelA, cRel and RelB expression. Steady state abundances are shown on the left, with time course responses to TME activation shown on
the right. Mean and standard deviation of 25 single cell simulations is indicated.
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DLBCL to the TME, however it is not known whether gene

expression heterogeneity is translated to heterogeneity in

protein abundance.
Distinct clonal populations within the
U2932 cell line have distinct NF-kB states

As simulations predicted that RelA was a critical NF-kB subunit

in determining the TME response of DLBCL cells, and previous

studies have implicated both cRel and RelB (44, 57), we sought to

establish a flow cytometry-based approach that would enable us to

characterize the composition of NF-kB proteins in DLBCL with

single cell resolution. A multiparametric flow cytometry panel was

established that included the three NF-kB proteins that contain

transaction domains, capable of activating gene expression (RelA,

cRel and RelB, Figures 3A, B). CD20 was included to enable

identification of B-lymphocytes in primary samples, and CD38 as

a potential surrogate marker for NF-kB activation, as seen in

chronic lymphocytic leukemia (58). Given their similarity by cell-

of-origin and overall NF-kB activity inferred from gene expression

(Figure 2A), we first measured the NF-kB composition of the RIVA

and U2932 cell lines (Figures 3A, B). We found that the two cell

lines expressed similar levels of cRel and RelB, but the U2932 cell

line contained substantially more RelA (Figures 3A, B). While there

appeared to be higher cRel in the U2932 cell line compared to

RIVA, this was non-specific as demonstrated by a similar difference

between the two stained with isotype controls (Figure 3B).

The U2932 DLBCL cell line contains two genetically distinct

subclones (R1 and R2) that are stably retained and identifiable by

differential CD20 and CD38 expression (59)(Figure 3C). We found

that the CD38high subclone (U2932 R1) had elevated RelA

compared to U2932 R2 (Figures 3C, D, 2.2 fold, p=0.0014). In

this cell line, CD38 activity correlates with increased NF-kB activity.

Interestingly, as predicted by computational modeling informed by

gene expression data, RelA was found to be significantly
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heterogeneous between DLBCL cell lines (Figures 3A, B and

Figure 1C). However, flow cytometry revealed additional

heterogeneity also exists within the bi-clonal U2932 cell line,

which could not be predicted from gene expression data

(Figures 3C, D).
Flow cytometry-based NF-kB
fingerprinting reveals heterogeneity in the
state of NF-kB signaling in DLBCL beyond
known subtypes

To overcome challenges in quantitatively comparing flow

cytometry results across cell lines we subtracted isotype control

MFI values from each antibody’s expression value before combining

all the data across cell lines and standardizing the data such that it

has zero mean and unit variance. The result was an “NF-kB
fingerprint” for a cell population, which allowed multiparametric

comparison of the NF-kB status in multiple cell populations while

maintaining within-sample heterogeneity (Figures 3E, F). This

approach allowed quantitative comparison of within-sample and

between-sample variability. Combining the U2932 R1 and R2 NF-

kB fingerprints data with those from the RIVA cell line revealed that

all three cell populations had similar expression of all measured NF-

kB components except for substantial differences in RelA, with the

lowest RelA expression in RIVA cells (Figure 3F). Western blots for

RelA, RelB and cRel confirmed that RelA was substantially higher in

the U2932 cell line than the RIVA cell line, with the cRel and RelB

expression being similar between these two cell lines (Figure S1).

These distinct NF-kB fingerprints despite similar gene expression

profiles and the same cell-of-origin, highlight that cell-of-origin is

insufficient to describe the heterogeneity in NF-kB state between

DLBCL lines. We find that while cell-to-cell variability results in

overlapping NF-kB fingerprints, between sample variability in RelA

results in distinct NF-kB fingerprints, even within subclones of the

same cell line (Figure 3F).
A B C

FIGURE 2

Computational modeling predicts that DLBCL cell lines of the same cell of origin have distinct basal RelA activity. (A) Expression of NFKB1 (encoding
p105/p50) and NFKB2 (encoding p100/p52) in published gene expression data (GSE103934) for a library of DLBCL cell lines (53). ABC/GC-DLBCL is
indicated in red and blue respectively. (B, C) Nuclear RelA:p50 (B) and cRel:p50 (C) concentration in computational simulations using gene
expression values to scale the expression of NF-kB components and create cell line-specific models. Steady state abundances are shown on the left,
with TME-activated time course responses shown on the right. Mean and standard deviation of 25 single cell simulations is indicated.
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FIGURE 3

Flow cytometry-based NF-kB fingerprinting reveals unique NF-kB signaling states in subclones of the U2932 cell lines and between ABC-DLBCL cell
lines. (A) Median Fluorescence Intensity (MFI) of NF-kB components cRel (orange), RelA (green) and RelB (pink) in U2932 and RIVA cell line measured
by flow cytometry. (B) Histograms of NF-kB components cRel, RelA and RelB in U2932 (color) DLBCL cell line compared to RIVA (gray) DLBCL cell
line. Control indicates isotype control. Histograms are normalized to equal peak height. (C) Flow cytometry histograms for the indicated proteins in
the U2932 R1 and R2 subclones as determined by gating CD38hi/CD20hi compared to CD38lo/CD20lo respectively. (D) Fold change in MFI of the
indicated NF-kB components between the U2932 R1 and R2 subclones identified as CD20hi (R1) and CD20lo (R2). Mean of two replicates is shown
with individual experiments indicated with a dot. * = p<0.05, **=p<0.01 (E) NF-kB fingerprinting approach (above) and contour plot (below) for
U2932 cell line. Cell density is indicated with a contour plot with the R1 subclone in green and R2 subclone in yellow. (F) Same as (E) but with the
inclusion of data from the RIVA cell line.
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NF-kB fingerprinting reveals substantial
NF-kB heterogeneity within and across cell
lines, primary DLBCL and healthy B cells

To establish whether the heterogeneity observed in RelA (but

not RelB or cRel) between RIVA and U2932 cell lines was a

property of ABC-DLBCL cell lines, all DLBCL cells or all B cells,

we performed further NF-kB fingerprinting on another ABC-

DLBCL cell line (HBL-1), a primary DLBCL patient lymph node

biopsy, and healthy primary B cells extracted from peripheral blood

(Figure 4). We were able to generate NF-kB fingerprints for all these

sample types. Variability in cRel was all explained by within-sample

cell-to-cell variability, with no variability between samples. The

extent of variability within a sample differed between cell lines, with

the RIVA and HBL1 cell lines showing the highest cell-to-cell

variability in cRel expression (Figure 4A). The primary DLBCL

patient B cells and healthy donor B cells had the lowest cRel
Frontiers in Oncology 08
variability (Figure 4A). While all the cell lines showed similar

RelB expression, dominated by within-sample variability, the

primary B cells both showed lower expression of RelB with less

within-sample variability (Figure 4A).

As the largest variability between cell populations was seen in

RelA and RelB expression, plotting NF-kB fingerprints based on

RelA and RelB expression revealed distinct NF-kB fingerprints in

each of the measured cell populations (Figure 4B). The ABC-

DLBCL line HBL1 expressed similar RelB and cRel, consistent

with the other cell lines assayed, and similar RelA expression to

U2932 cells, placing its fingerprint between U2932 R1 and R2

subclones (Figure 4B). Taken together, all the ABC-DLBCL cell

lines (and clonal populations within cell lines) differ in their

expression of RelA alone (Figure 4B). Interestingly, this is the

expression change that simulations predict to be the most

impactful on response to the TME, suggesting these cell lines may

have distinct responses to the TME (Figure 1C).
A

B C

FIGURE 4

NF-kB fingerprinting can be applied to cell lines, DLBCL patient samples and healthy blood and reveals a unique NF-kB state in each cell population. (A)
Experimentally measured NF-kB fingerprinting based on RelA and cRel abundance (left), and cRel and RelB abundance (right). Cell density is indicated with a
contour plot and each cell population is shown in distinct colors. (B) Experimentally measured NF-kB fingerprinting based on RelA and RelB abundance. Cell
density is indicated with a contour plot and each cell population is shown in distinct colors. (C) Computationally simulated NF-kB fingerprints in six cell
population specific computational simulations informed by experimental NF-kB fingerprinting (B). 1,000 cells were simulated in each cell population (6,000
simulations in total), with cell-to-cell variability incorporated as described previously (32), cell density is indicated with a contour plot and each cell population
is shown in distinct colors.
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FIGURE 5

Computational modeling of DLBCL, including receptor-proximal signaling, enables integration of NF-kB fingerprints and mutational data to predict
response to the tumor microenvironment. (A) Schematic of the computational model constructed by combining existing models of TLR signaling
(55), BCR signaling (37), and NF-kB/IkB regulation (54). All models are run as published with active IKK species summed from the BCR and TLR
models to determine the active IKK input curve to the NF-kB model. Schematic combines some repeated species, a more detailed schematic is
included in Figure S3. (B) Cell line specific simulations of nuclear RelA:p50 in each virtual cell line at steady state (left) and the fold change in nuclear
RelA:p50 in response to stimuli (right). Mean and standard deviation of 25 single cell simulations is indicated. (C) Simulated abundance of nuclear
RelA:p50 in virtual HBL1 cell line with no changes (blue), with auto-activating Myd88 to recapitulate MYD88l265p (purple), and with high basal BCR
signaling to recapitulate CD79B mutations present in this cell line (pink), and the combination of the two mutations (grey). Mean and standard
deviation of 25 single cell simulations is indicated. (D) Simulated nuclear RelA:p50 in virtual U2932 cell line with no changes (R1 green, R2 yellow),
with increased TAK1 activity recapitulate the TAK1 mutation present in this cell line (R1 grey, R2 black). Mean and standard deviation of 25 single cell
simulations is indicated. (E) Cell line specific simulations of nuclear RelA:p50 in each virtual cell line at steady state (left) and the fold change in
nuclear RelA:p50 in response to stimuli (right), with mutational event included from panels (C, D). Mean and standard deviation of 25 single cell
simulations is indicated. (F) Experimentally measured median fluorescence intensity (MFI) of phosphorylated RelA in each indicated cell line. The
mean of two replicates is shown with individual experiments indicated with a dot. The unstimulated MFI is shown (left) with the percentage change
in MFI following 45 mins of activation of TLR9 with CpG ODN shown (right).
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To determine whether these distinct NF-kB fingerprints may

modulate the TME, in addition to modulating the cellular response

to TME stimuli, we analyzed published RNA-sequencing data

across a library of DLBCL cell lines. This analysis revealed that

cell lines with high expression of RelA also had higher expression of

multiple immunomodulatory cytokines and chemokines (Figure

S2). The same was not true of cRel, or RelB, and no difference was

seen between cell lines stratified by COO (Figures S2, S3).

Combining our computational modeling with these gene

expression data suggests that RelA-high DLBCL cells may create a

more inflammatory TME, while also amplifying their response to

this inflammatory microenvironment (Figures 1C and Figure S2).

Performing NF-kB fingerprinting on a diagnostic DLBCL

lymph node biopsy also revealed a unique fingerprint with

substantial within-sample heterogeneity in RelA that spanned the

cell lines profiled (Figure 4B). The difference in RelA expression

between the major and minor cellular sub-population in the patient

sample is consistent with the difference in RelA expression within

the U2932 subclones (Figure 4B). While the primary DLBCL

sample was homogeneous for RelB and cRel, its fingerprint did

reveal distinct RelB expression from the cell lines assayed. The NF-

kB fingerprint of healthy B cells was also found to be distinct from

all DLBCL cells profiled, with strikingly homogeneous and low

expression of both RelB and RelA (Figure 4B). Taken together, we

found that NF-kB fingerprinting can be applied to a variety of

cellular sources and uncovers striking heterogeneity in RelA even

between cell lines with the same COO, and within a single

patient sample.
Computational modeling can recapitulate
distinct NF-kB fingerprints in DLBC

Multiple sources of heterogeneity can explain within- and

between-sample variability. These sources of variability include

genetic heterogeneity, epigenetic heterogeneity, molecular

variability that can be inherited across cell division, and

inherently stochastic processes such as noisy gene expression

through “transcriptional bursting” (33). Studies that combined

computational modeling with single cell lineage tracking

established that cell-to-cell variability within a B cell population is

predominantly explained by non-genetic molecular variability. This

variability may be accumulated over many rounds of imperfect

inheritance of molecular network components during cellular

proliferation (32, 33, 35). Therefore, we hypothesized that the

same source of variability could explain within-sample cell-to-cell

variability in the measured NF-kB fingerprints. To test this

hypothesis, we created cell-population-specific computational

models of NF-kB signaling by altering the expression of RelA and

RelB as determined by experimental NF-kB fingerprinting, and

assumed cell-to-cell variability within a cell population was

consistent with cell-to-cell variability in non-malignant activated

B cells (11% coefficient of variance introduced to parameters that

control expression and degradation of molecular components). The

resulting cell-line/population-specific models had strikingly similar

NF-kB fingerprints to the experimental results (Figure 4C). This
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indicates that the same inherent molecular variability seen in non-

malignant B cells explains cell-to-cell variability within mono-

clonal B-cell populations. Interestingly, simulated healthy donor B

cells over-estimate the cell-to-cell variability, indicating that resting

cells have low cell-to-cell variability, while proliferating B cells,

whether through malignant transformation or immunogenic

activation, have high cell-to-cell variability. As NF-kB
fingerprinting only measures total protein content of each cell, we

could not determine the overall level of activation of each cell. We

found that computational models with high or low NEMO-IKK

activity could be indistinguishable using NF-kB fingerprints alone

(Figure S4 and Figure 4C). As activating mutations in each cell line

likely alter the basal level of NEMO-IKK, we hypothesized that NF-

kB activating mutations combine with NF-kB composition to

control the cellular response to TME stimuli.
Computational modeling predicts NF-kB
fingerprints correlate with TME responses
in DLBCL cell lines

In DLBCL, mutations in NF-kB signaling do not frequently

occur in the core signaling network of NF-kB-IkB signaling, but

occur in the molecular network that transduces receptor-proximal

signaling to NEMO-IKKa/b and NIK-IKKa (10). We incorporated

these molecular networks into our computational modeling by

integrating published models of TLR and BCR signaling,

converging on NEMO-IKK, with the model of core NF-kB
signaling (37, 55). The resulting combined model’s scope includes

many genes that are commonly mutated in DLBCL including

MYD88, CD79B and TAK1 (Figure 5A and Figure S5). Using the

simulated DLBCL cell lines (Figure S1), we simulated the response

to TLR9 activation in the TME (21). As expected from previous

simulations (Figure 1C), the cell lines with increased RelA

expression are predicted to display increased activation of RelA in

response to TLR9 activation (Figure 5B).
Incorporating mutations and NF-kB
fingerprints into computational models
accurately predicts heterogeneous
response to the TME

Recurrent mutations occur in DLBCL that are likely to disrupt

the signal transduction between the TME and NF-kB (10). Some of

these mutations exist in the cell lines studied here, and we

hypothesized that they may alter the predicted response to the

TME. The HBL1 cell line has both MYD88l265p and CD79B

activating mutations (60). Introducing Myd88 mutations (by

increasing Myd88 self-activation rate) or CD79B mutations

(increasing the level of chronic BCR activation) to the HBL1

specific model does not increase basal nuclear RelA:p50 activation

(Figure 5C left). However, each of these mutations substantially

reduces the induction of nuclear RelA:p50 in response to TLR

activation (Figure 5C right). The combination of mutations reduces

activation to within the standard deviation of inherent cell-to-cell
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variability in the unstimulated cell population, effectively entirely

abrogating activation of RelA:p50 in response to the TME

(Figure 5C right). The U2932 cell line has TAK1 mutations (10).

Simulating the impact of this mutation predicts that this mutation

does not increase basal nuclear RelA:p50, but does substantially

reduce the activation of RelA in response to TLR activation

(Figure 5D). The RIVA cell line expresses wild type Myd88,

TAK1 and CD79 genes (61). When we compare simulations

informed by NF-kB fingerprinting alone (Figure 5B) with

simulations that also consider mutations (Figure 5E) we find that

the basal steady-state NF-kB activity is unchanged. However,

mutations present in these cell lines mean that cells with

increased RelA expression no longer have increased RelA:p50

response to a simulated TME stimulus. In fact, we find that all

our cell lines are expected to be broadly unresponsive with only the

RIVA line predicted to significantly respond to the TME once

mutations are considered. To confirm this prediction, we

experimentally measured phosphorylated-RelA, a marker of RelA

activity, in the basal state and 45 minutes after exposure to a TLR9

agonist. In line with computational predictions, the highest RelA

activity in the basal state was found in U2932 R1 cells with the

lowest in RIVA cells (Figure 5F left). In response to TLR9

activation, we found only RIVA cells upregulated their RelA

activity (Figure 5F right). Taken together this demonstrates that

incorporating mutational information into computational models,

in addition to NF-kB fingerprint information, enables accurate

prediction of heterogeneous response to the TME in DLBCL.
Discussion

Here we develop a new approach to quantifying the NF-kB
composition of B cells: NF-kB fingerprinting. We apply NF-kB
fingerprinting to DLBCL cell populations, and use this data

iteratively, in combination with computational modeling, to

reveal striking diversity in the NF-kB state of DLBCL. While

previous studies have indicated that NF-kB activation is primarily

restricted to ABC-DLBCL (10), more recent work has implicated

NF-kB cRel in GC-DLBCL (57). Computational modeling

suggested that basal expression of NF-kB RelA is the most

important factor in determining how NF-kB responds to the

TME. These simulations also predicted that increased RelA

activity can decrease cRel activity through competition for p50.

We found strikingly heterogeneous RelA expression between cell

lines of the same COO and even within a single ABC-DLBCL cell

line. This study, combined with recent work that identified RelB

activation in another subset of DLBCL that also did not align with

COO, indicating that this is insufficient to characterize the

heterogeneity of NF-kB in DLBCL (44).

Due to the inclusion of cell surface markers that enable the

identification of B cells in blood, NF-kB fingerprinting is a useful

tool for quantifying the NF-kB state of B cells within primary

samples. Here we find we can apply NF-kB fingerprinting to cell

lines, needle core biopsies from DLBCL patients, and blood samples
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from healthy donors. Strikingly, we found unique NF-kB
fingerprints in every cell population tested with distinct NF-kB
fingerprints between healthy and malignant B cells.

Many potential sources of variability can contribute to the NF-

kB state of a DLBCL cell and its response to the TME, including:

mutational heterogeneity, stochastic gene expression noise, distinct

epigenetic states, and inheritable molecular variability that

accumulates over many generations of cell division. To

characterize cell type-specific responses to TME stimuli, here we

used DLBCL cell lines as model systems. Such cell lines are a useful

tool to study the TME, as they have well-characterized genetic

backgrounds, and do not require microenvironmental support for

survival, but can still be modulated by TME stimuli. Primary cells,

on the other hand, require complex co-culture conditions to allow

for survival long enough to perform experimental manipulation,

which would confound the effect of TME stimuli (62). Future

studies will assess whether combining computational modeling

and NF-kB fingerprinting can provide insight into how mutations

and the TME together affect NF-kB in DLBCL patient samples.

Due to the single-cell resolution of flow cytometry, NF-kB
fingerprints are valuable for informing computational modeling,

and combining the approaches provides insight into the different

sources of variability in response to the TME. Previous work found

that distinct expression of NF-kB components between cell types,

potentially through cell type-specific epigenetic states, could explain

cell type-specific responses to stimuli (54). The variability in RelA

and RelB expression we find here, in the absence of mutations

directly affecting these genes, is consistent with distinct epigenetic

states between cell populations, but further work is required to

measure this directly.

Single-cell lineage tracking combined with computational

modeling has also been used to quantify molecular variability that

accumulates as B cells divide and imperfectly inherit the molecular

components of the cell (32). We found that the same magnitude of

inherent variability captures within-sample variability in NF-kB
components in DLBCL cell populations and explains the cell-to-cell

variability in response to the microenvironment. To summarize, we

find that cell-to-cell variability in NF-kB is consistent with the

inherent molecular variability found in primary non-malignant B

cells, while between cell populations there exists distinct expression

of NF-kB components RelA and RelB that primes DLBCL cells to

have distinct responses to the TME.

Here we created a new computational model that combines

existing models of BCR and TLR receptor-proximal signaling and a

comprehensive multi-dimer model of core NF-kB signaling (37, 55,

56). There are very rarely mutations in the genes encoding the five

constituent NF-kB proteins [REL, RELA, NFKB1, NFKB2 and RELB

are mutated in 0.7%, 0%, 0.7%, 2.2% and 1.5% of DLBCL cases

respectively (5)]. Instead, recurrent mutations in DLBCL occur in

upstream signaling pathways. As these pathways are also responsible

for transducing microenvironmental signals, this new model is a

valuable tool for integrating mutational information with signaling

states to understand NF-kB regulation in DLBCL. Here we find that

only by integrating both signaling and genetic information in this
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computational framework can we predict how DLBCL will respond

to the TME. As the expression of immunomodulatory cytokines was

found to be strongly related to RelA activity, and the response to

TME stimuli also related to RelA activity. This creates a potential

feedback loop in which high RelA creates a more inflammatory

microenvironment while also modulating how DLBCL cells respond

to the microenvironment. Our investigations were restricted to

activation of the canonical NF-kB pathway, however the model

presented here provides a tool for future work investigating the

role of non-canonical pathway activation in the TME through CD40

or BAFF, both of which have been found to be prognostically

significant in DLBCL (16, 18, 63). Given the complex and dynamic

regulation between NF-kB and pathways controlling B cell

proliferation, apoptosis and terminal differentiation it is likely that

incorporating the model we assembled here into larger multi-scale

modeling frameworks will provide an opportunity to interrogate how

multiple mutations combine in DLBCL, and how to overcome this

dysregulation (32, 34). We expect the striking heterogeneity observed

here to be seen between DLBCL patients, and that this heterogeneity

will not align with clusters from molecular subtyping of DLBCL.

Historically, the use of NF-kB inhibitors in the clinic has been

largely unsuccessful due to severe on-target toxicities (38, 39).

However, there has been recent rapid progress in the development

of small molecule inhibitors and proteolysis targeting chimeras

(PROTACs) which target specific NF-kB pathways or components

(64–66), likely with reduced toxicity compared to broad-targeting NF-

kB inhibitors. Given the heterogeneity of NF-kB signaling in DLBCL,

improving treatments in hematological malignancies using these next-

generation targeted NF-kB inhibitors will require identification and

targeting of a particular subunit or pathway in each specific patient.

While NF-kB remains a promising target for the treatment of DLBCL

we expect this more personalized approach will be required, and

computational simulations together with NF-kB fingerprinting

provide a valuable framework for personalized treatment predictions.
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