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Computational modeling of DLBCL predicts response to
BH3-mimetics
Ielyaas Cloete 1, Victoria M. Smith 2,3, Ross A. Jackson2,3, Andrea Pepper1, Chris Pepper1, Meike Vogler4, Martin J. S. Dyer2,3 and
Simon Mitchell 1✉

In healthy cells, pro- and anti-apoptotic BCL2 family and BH3-only proteins are expressed in a delicate equilibrium. In contrast, this
homeostasis is frequently perturbed in cancer cells due to the overexpression of anti-apoptotic BCL2 family proteins. Variability in
the expression and sequestration of these proteins in Diffuse Large B cell Lymphoma (DLBCL) likely contributes to variability in
response to BH3-mimetics. Successful deployment of BH3-mimetics in DLBCL requires reliable predictions of which lymphoma cells
will respond. Here we show that a computational systems biology approach enables accurate prediction of the sensitivity of DLBCL
cells to BH3-mimetics. We found that fractional killing of DLBCL, can be explained by cell-to-cell variability in the molecular
abundances of signaling proteins. Importantly, by combining protein interaction data with a knowledge of genetic lesions in DLBCL
cells, our in silico models accurately predict in vitro response to BH3-mimetics. Furthermore, through virtual DLBCL cells we predict
synergistic combinations of BH3-mimetics, which we then experimentally validated. These results show that computational systems
biology models of apoptotic signaling, when constrained by experimental data, can facilitate the rational assignment of efficacious
targeted inhibitors in B cell malignancies, paving the way for development of more personalized approaches to treatment.
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INTRODUCTION
Apoptosis is a crucial component for the development of
multicellular organisms and the functioning of the immune
system. The BCL2 family of proteins are the principal regulators
of mitochondrial-dependent apoptosis. This family of proteins
consists of more than twenty-five members, and is further
categorized into three groups based on their protein structure
and function (Supplementary Fig. 1A and B): pro-apoptotic BCL2
proteins (BAX and BAK), anti-apoptotic BCL2 proteins (BCL2, BCL-
xL, MCL1, etc.) and BCL2 homology domain 3 (BH3)-only proteins
(BID, BIM, PUMA, NOXA, etc.)1. Prior to initiation of apoptosis, anti-
apoptotic BCL2 proteins bind to BAX/BAK proteins at the
mitochondrial outer membrane (MOM), impeding BAX/BAK
oligomerization, which prevents mitochondrial outer membrane
permeabilization (MOMP). Initiation of apoptosis leads to activa-
tion of BH3-only proteins, which either activate BAX/BAK directly
through complex formation between BH3-only proteins and BAX/
BAK or activate BAX/BAK indirectly by sequestering anti-apoptotic
BCL2 proteins leading to the release of BAX/BAK from complexes
containing the anti-apoptotic BCL2 proteins. BAX/BAK activation
results in MOMP and subsequent apoptotic cell death2.
Avoidance of apoptosis is a hallmark of cancer, which in B cell

lymphoma is often achieved through the upregulation of anti-
apoptotic BCL2 proteins due to chromosomal translocation, gene
amplification or constitutive activation of transcription factors that
upregulate BCL2 family proteins such as nuclear factor kappa B
(NF-κB)3–5. BCL2 dysregulation is commonly linked to chemore-
sistance and poor prognosis, and therefore represents a patho-
logically important biomarker and an attractive therapeutic target
in B cell lymphoma6,7.
ABT-199 (venetoclax), a BCL2 specific inhibitor, was first

approved for treatment of chronic lymphocytic leukemia (CLL)

and acute myeloid leukemia8–10, and has shown significant clinical
activity in CLL regardless of genotype11. However, in Diffuse Large
B cell Lymphoma (DLBCL), responses to ABT-199 are less
impressive, despite BCL2 overexpression in about 40% of cases8.
In a similar vein, BCL-xL is highly expressed in about 95% of DLBCL
patient samples but only a proportion of DLBCL cell lines respond
to BCL-xL inhibition12,13. Cell lines with comparably high levels of
specific BCL2 family proteins frequently show different responses
to BH3-mimetics that target those proteins13. For example, there is
no correlation between the abundance of MCL1 or BCL-xL and
response to inhibitors that target these proteins13 and while BH3-
profiling provides a functional measurement of the state of
apoptotic signaling, actual responses to BH3-mimetics can differ
from those predicted by BH3-profiling13,14. Collectively, these data
indicate that the heterogeneous responses to BH3-mimetics in
DLBCL are determined by the complex interactions between the
BCL2 family of proteins and their binding partners12,13. Conse-
quently, there is a need to develop better predictive tools to
inform clinical decision making relating to optimal drug selection
for individual patients.
Computational systems models can facilitate accurate predic-

tion of how a molecular-scale signaling network will respond to
perturbation with single cell and cell-population resolution15,16.
Various aspects of the apoptotic signaling network have been
encoded in computational models17–32. However, DLBCL cells
exhibit variable expression of multiple anti-apoptotic BCL2
proteins and show heterogeneous expressions of both pro-
apoptotic BCL2 proteins and BH3-only proteins12,13. Therefore,
new computational models are required to capture the diverse
abundances of BCL2 proteins implicated in DLBCL with their
known interactional complexities to enable accurate prediction of
responses to BH3-mimetics.
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In this study, we aimed to establish virtual DLBCL cell lines
generated from mechanistic computational models, informed by
abundances of BCL2 family proteins. We aimed to use virtual cell
lines to accurately predict, in silico, the experimentally-determined
response of DLBCL cell lines to BH3-mimetics and identify
molecular and genetic determinants of treatment resistance.
Finally, we sought to establish whether a computational systems
biology approach can be used to rationally predict apoptotic
responses in DLBCL by computationally identifying, and experi-
mentally validating, synergistic combinations of BH3-mimetics. We
aim to lay the foundation for a personalized medicine approach to
targeting the spectrum of anti-apoptotic signaling found in B cell
lymphoma.

RESULTS
A computational “unified-embedded-together”model enables
exploration of differential sensitivities to BH3-mimetics
We hypothesized that the heterogeneous sensitivity of B cell
lymphoma cells to BH3-mimetics is a predictable result of the state
of the molecular signaling network in these cells. If true, an in
silico computational model with sufficient detail and breadth
would be able to predict responses, which could be validated
experimentally. Combining the “embedded-together” and “uni-
fied” conceptual frameworks of apoptotic signaling (Supplemen-
tary Fig. 1A, Supplementary Note 1)33,34, and building upon
established models of apoptotic signaling17–32, we constructed a
computational model capturing the complex interactions between
BCL2 family proteins (Supplementary Fig. 1B) with appropriate
granularity to simulate the effects of BH3-mimetics (Fig. 1). We
assume downstream effector-caspase induced biochemical and
morphological alterations such as PARP cleavage is an inevitable
consequence of MOMP. While the model does not explicitly
include commonly mutated genes such as TP53 or MYC, these
mutations can be simulated through their impact on kinetic rates
in the signaling network.

The experimentally-measured response to BH3-mimetics can
be predicted by simulating a heterogeneous population of RC-
K8 cells
To establish the feasibility of predicting the response of DLBCL cells
to BH3-mimetics we first focused on the RC-K8 cell line, chosen due
to lack of response to the BCL2 inhibitor ABT-19913. We
incorporated densitometry readings of BCL2 protein expression in
RC-K8 cells measured by Western blotting into the newly
established model in order to capture the expression profiles of
BCL2 family proteins (Fig. 2A, see Supplementary Note 1)13.
Interestingly, combining protein expression data with mass action
kinetics using experimentally determined binding affinities
revealed discrepancies in simulated heterodimer formation when
compared to experimental coimmunoprecipitation data (Supple-
mentary Fig. 2). The source of these discrepancies could include
inaccuracies in protein abundance measurements, binding affinity
quantification, or heterodimer abundance measurements. Alterna-
tively, the scope of our model is restricted to one subcellular
localization (the mitochondrial outer membrane), and BCL2-family
proteins have been shown to localize to multiple subcellular
locations outside the scope of this model35. We therefore
incorporated densitometry readings from co-immunoprecipitation
experiments, and through manual fitting of parameters represent-
ing translocation of heterodimeric complexes outside the scope of
the model, we ensured the resulting computational model of the
RC-K8 cell line captured BCL2-family protein abundance and
heterodimerization profiles (Fig. 2A, B)13. Simulating the impact of
BCL-xL, BCL2 and MCL1 inhibition on MOMP in this virtual RC-K8
cell line resulted in strong induction of MOMP in response to BCL-
xL inhibition, weak induction of MOMP in response to MCL1
inhibition and no response to BCL2 inhibition (Supplementary Fig.
3A). This recapitulated the selective response of this line in
experiments and indicated the model could predict the selective
response of RC-K8 cells to BH3-mimetics.
As a fixed and reproducible fraction of the DLBCL cells undergo

apoptosis in response to a given dose of BH3-mimetics13, we
hypothesized that this may result from molecular cell-to-cell
heterogeneity within the cell population. The cell-to-cell variability
in the abundance of signaling components in B cells has been
previously quantified through combined lineage tracing and

Fig. 1 A schematic diagram of the apoptotic signaling network. Lines correspond to interactions between different species, with open
circles, closed dots, and perpendicular lines denoting activation, binding, and inhibition/sequestration. Dashed lines correspond to the
translocation of species. Some translocations are omitted as most BH3-only proteins and anti-apoptotic BCL2s are continuously trafficking
between the cytoplasm and the MOM. Complete model details are provided in the supplemental modeling methodology and full code
defining and running the model is available on GitHub (https://github.com/SiFTW/BH3Models). “Apoptotic signaling” represents any upstream
activators of apoptosis, such as Fas/TRAIL activity. BCL2A1 is displayed as “A1”.

I. Cloete et al.

2

npj Systems Biology and Applications (2023)    23 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

https://github.com/SiFTW/BH3Models


Fig. 2 The experimentally-measured response to BH3-mimetics can be predicted by simulating a heterogeneous population of RC-K8
cells. A Comparison of the relative protein expression in the computational model to experimental data. Abundance of each protein is
normalized to the most highly expressed anti-apoptotic BCL2 family protein and quantified from ref. 13. B Comparison of the proportion of
pro-apoptotic and BH3-only BCL2 proteins bound to BCL-xL in the computational simulation compared to experimental data quantified from
ref. 13. C Schematic of the method used to simulate BCL-xL inhibition in a heterogeneous cell population. From the RC-K8-speific
parameterization established in panels A and B initial conditions are independently sampled from a log-normal distribution to create
heterogeneous cells with distinct starting states. Within all cells in the population the target protein (e.g., BCL-xL) is inhibited and the response
to this perturbation recorded (see Methods). D Line graphs showing the simulated response to 50% BCL-xL inhibition in a heterogeneous RC-
K8 cell population. A threshold of death (10% higher than is present within the naive population) is calculated. The time of death of in each
cell is determined as the time this threshold is crossed (top panel). The percentage viability of the cell population can then be determined
over time in response to BCL-xL inhibition (bottom panel). E Schematic showing that the process used to simulate BCL-xL inhibition in A to
D is repeated for multiple BH3-mimetics. F Line graph of the simulated viability of the RC-K8 cell population in response to BCL2 inhibition
(black), BCL-xL inhibition (red) and MCL1 inhibition (blue). The viability of the cell population is recorded to 72 h to match experimental
methods. G Schematic showing that the process used to simulate 50% inhibition in panels A to F is repeated for 10 distinct strengths of
inhibition between 0 and 100% to enable comparison to dose-response experiments. H Line graphs showing the simulated percentage of the
RC-K8 cell population viable at each percentage inhibition of the indicated target protein. This prediction can be compared to experimentally
measured EC50 values, right13.
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computational modeling and was found to predictably explain
fixed proportions of primary B cells undergoing distinct fates such
as apoptosis, mitosis and differentiation in response to antigenic
stimulation15,16. We therefore converted these simulations of a
single average cell-population response, into simulations repre-
senting heterogeneous populations of single cells by sampling
initial conditions as described previously (Fig. 2C)15. Simulating
50% inhibition of BCL-xL revealed that distributed initial condi-
tions were sufficient to create heterogeneity in the timing that
MOMP increased within a simulated cell population (Fig. 2D). We
considered an individual cell to have died in response to BCL-xL
when MOMP exceeded a threshold of 10% above the level of
MOMP in the pre-treatment population and, in this way, we were
able to simulate viability over time in response to BH3-mimetics in
the virtual RC-K8 cells (Fig. 2D). Extending this approach to the
effect of other BH3-mimetics revealed specific timings of
apoptosis within the cell population, and the proportion of cells
undergoing apoptosis in response to 50% inhibition of BCL2, BCL-
xL and MCL1, with the largest proportion of cell death occurring
rapidly in simulations of RC-K8 cells following BCL-xL inhibition
(Fig. 2E and F). Simulating 0–100% inhibition of BCL2, BCL-xL, and
MCL1 within a heterogeneous cell population enabled predictions
of the proportion of the RC-K8 cells that would be viable at 72 h
(Fig. 2G and H); these predictions were comparable to experi-
mentally determined EC50 values; the concentration of a drug
required to produce 50% of its maximal effect (Fig. 2H)13. We find
that this systems biology approach predicts that RC-K8s have low
EC50 BCL-xL inhibitors, high EC50 for MCL1 inhibitors, and that the
EC50 for BCL2 inhibitors will not be reached even at 100%
inhibition of BCL2 (Fig. 2H). This is in strong agreement with
experimentally determined EC50 values (Fig. 2H right), and
independent of the specific threshold of MOMP activity chosen
to trigger apoptosis (Supplementary Fig. 3B). The agreement
between experimentally determined EC50 values and simulations
was an emergent property of the network state based on
immunoprecipitation and co-immunoprecipitation data, as no
model fitting was performed to recapitulate these EC50 values.

Virtual lymphoma simulations can predict response to BH3-
mimetics
As we found a systems biology approach could predict the
response of RC-K8 cells to BH3-mimetics, we expanded the
approach to a library of six DLBCL lines (RIVA, U2932, RC-K8,
SUDHL8, SUDHL10, and U2946), chosen to capture the diversity of
responses to BH3-mimetics seen within both patient samples and
cell lines13. Of the 10 lines for which immunoprecipitation and co-
immunoprecipitation data is available we randomly selected 2
lines from each annotated category of “mainly BCL2 dependent”,
“mainly MCL1 dependent”, and “mainly BCL-xL dependent”. We
did this to establish whether a single interaction network could
capture the variety of responses seen in DLBCL cell lines. We
incorporated the heterogeneous expression of BCL2 family
proteins and their heterodimerization profiles, measured by
immunoprecipitation and co-immunoprecipitation, in the same
way as we did for RC-K8 cells (Fig. 2)13. The result was a library of
virtual DLBCL cell lines that accurately captured the abundance
and binding partners of BCL2 family proteins (Fig. 3A). Simulating
the response of the library of DLBCL lines to BH3-mimetics
targeting BCL2, BCL-xL and MCL1 predicted highly heterogeneous
responses (Fig. 3B). Simulations predicted that RIVA cells would
only respond to BCL2 inhibition, while U2932 cells were predicted
to be broadly resistant to all BH3-mimetics (Fig. 3B). Comparing
this prediction to experimentally determined EC50 values showed
that the model had correctly predicted that RIVA cells only
responded to BCL2-targeting ABT-199, while the predicted lack of
response in U2932 cells was confirmed by the high (micromolar)
EC50 values of U2932 cells when challenged with all three

BH3-mimetics (Fig. 3B). Both RC-K8 cells and SUDHL8 cells were
predicted to be most sensitive to inhibition of BCL-xL, with both
lines also responding to MCL1 inhibition (at intermediate doses in
SUDHL8 cells, and high doses in RC-K8 cells) (Fig. 3B). Comparing
these predictions to experimentally determined EC50 values
revealed that these computational predictions closely match
experimental measurements (Fig. 3B). Simulation of SUDHL10 and
U2946 cell lines predicted that these lines would only respond to
inhibition of MCL1, which was validated by experimental
measurements (Fig. 3B). Taken together, our virtual lymphoma
simulations accurately predicted experimentally measured
responses to BH3-mimetics.

Considering genetic lesions in virtual lymphoma can improve
accuracy of simulations
While the computational model could accurately assign the right
drug to the right DLBCL cell lines informed by protein-expression
data alone, some quantitative discrepancies between computa-
tionally predicted responses and experimentally measured EC50
values suggests that additional mechanisms may contribute to
selective responses. Genetic lesions, such as MYC translocations
and p53 mutations, are present in all modeled cell lines except RC-
K8 cells36. Simulating the impact of commonly occurring
mutations such as MYC translocation and p53 mutations on our
cell lines improved the quantitative match between experiment
and simulation in some cell lines (RIVA, U2932, SUDHL10, and
SUDHL8) but not others (U2945, Supplementary Fig. 4). Each of
these mutations can have numerous potential consequences
which are likely dependent on the apoptotic network state in each
cell line. We sought to predict which of these potential impacts
was functionally significant in controlling the response to BH3-
mimetics by computationally identifying which effect improved
the match between the computational predictions and experi-
mental validation.
RIVA cells were more sensitive to BCL2 inhibition than predicted

from protein data alone (Fig. 3B). Simulating the impact of BCL2
gene amplification and MYC translocation (resulting in elevated BAX
expression)37, increased the sensitivity of virtual RIVA cells to ABT-199
indicating an important role for these mechanisms in modulating
the response to BH3-mimetics (Supplementary Fig. 5A and B).
Incorporating the presence of a MYC-overexpressing subclone in
U2932 cells, which resulted in increased BIM and BAX expression,
explained the response of this line to high doses of ABT-199
(Supplementary Fig. 5A, B). In RC-K8 cells the magnitude of the
difference in response to A1331852 and S63845 was underestimated
by our simulations (Fig. 3B). The match between simulation and
experiment in both lines was improved by decreasing the
abundance of MCL1. Biologically, this could be mediated by
the truncated p300 expressed in RC-K8 cells, which reduces the
acetylation of MCL1 thereby decreasing MCL1 protein stability38. In
SUDHL8 cells, mutated TP53 may cause the reduced gene expression
of MCL1 (Supplementary Fig. 5A, B)39. While the simulation
accurately predicted the response of SUDHL10 and U2946 cells to
the MCL1 inhibitor S63845, the simulation only predicted apoptosis
at high doses of the inhibitor (Fig. 3). MYC translocation in SUDHL10
may increase expression of MCL1, BIM and NOXA resulting in
increased sensitivity to inhibition of MCL1, while mutated TP53 in
SUDHL10 cells may decrease the affinity of MCL1 for p53 protein,
increasing the binding between MCL1 and BIM (Supplementary
Fig. 5A, B)40. Taken together these data show that by comparing
computational predictions with experiment results, and iteratively
improving the match between the two, we can narrow down the
plethora of potential effects of genetic lesions to those that are
predicted to be functionally significant. By iteratively improving
the model in this way, the correlation between the predicted
response from simulations and experiments across the library of
virtual cell lines substantially improved (R2 from 0.38 to 0.67,
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Supplementary Fig. 5C, D). Interestingly, when assessing the
impact of genetic lesions on protein expression level and
heterodimerization levels, we found these remain overall
unchanged and consistent with experiments, despite the large
changes in dose-response to BH3-mimetics (Supplementary
Figs. 6 and 7). While 4 individual protein abundances changed
substantially in individual cell lines, such as MCL1, BAX and NOXA
in U2932 cells, and MCL1 in SUDHL8 cells, these differences may

highlight discrepancies in the experimental data or non-linearity
in the relationship between immunoprecipitation bands and
protein concentration (Supplementary Figs. 6 and 7). Taken
together, this data suggests that while the optimum BH3-mimetic
can be reliably identified from protein data alone (Fig. 3), once
genetic lesions are considered, the virtual cell lines can
quantitatively predict experimentally determined EC50 values in
virtual cell lines (Supplementary Fig. 4D).

Fig. 3 Cell line-specific computational models recapitulate experimentally measured protein expression and heterodimerisation profiles
and enable accurate prediction of the optimal BH3-mimetic for each cell line. A Right: Comparison of the relative protein expression in the
computational model to experimental data. Abundance of each protein is normalized to the most highly expressed anti-apoptotic BCL2 family
protein and quantified from ref. 13. Left: Comparison of the proportion of pro-apoptotic and BH3-only BCL2 proteins bound to the dependent
anti-apoptotic BCL2 protein in each line in the computational simulation compared to experimental data. B Model simulations (left) of cell
population viability (%) in response to 10 different strengths of BH3-mimetics compared to experimentally-measured EC50 values.
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Inherent resistance to BH3-mimetics in cellular sub-
populations is the predictable result of cell-to-cell molecular
variability
As fractional killing of a cell line can be explained as the predictable
result of inherent molecular heterogeneity between cells (Fig. 2), we
sought to use simulations to predict the molecular determinants
of inherent resistance to BH3-mimetics. Simulating a dose of
BH3-mimetics that causes 50% reduction in viability and then
analyzing the starting state of cells revealed statistically significant
differences (p < 0.05) in the predicted molecular network state of
cells that would undergo apoptosis in response to the inhibitor
when compared to those that would be resistant to the treatment
(Supplementary Figs. 8–13). As expected, within a population of
RIVA (Supplementary Fig. 8), U2932 (Supplementary Fig. 9), and
SUDHL10 (Supplementary Fig. 10) cells responding to BCL2
inhibition, the treatment-sensitive cells had higher abundances of
pro-apoptotic and lower anti-apoptotic BCL2 proteins prior to the
drug being applied. Furthermore, cells that undergo apoptosis were
predicted to have fewer complexes between anti-apoptotic BCL2
proteins and BH3-only proteins (Supplementary Figs 8, 9). In RC-K8
cells responding to BCL-xL inhibition (Supplementary Fig. 10) and
MCL1 inhibition (Supplementary Fig. 11), the cells that undergo
apoptosis expressed more pro-apoptotic BCL2 proteins, more BH3-
only proteins, and more complexes between pro-apoptotic BCL2
and BH3-only proteins. Intriguingly, cells susceptible to BCL-xL and
MCL1 inhibition had significantly more pro-apoptotic proteins
bound to the mitochondria (Supplementary Figs. 10, 11).
While BCL2A1 was not predicted to contribute to the inherent

treatment-resistant cell population in some cell lines (U2932, RIVA,
and SUDHL10), in others (RC-K8 and SUDHL8) the BCL-xL resistant
cell populations were predicted to be significantly higher in
BCL2A1 (Supplementary Figs. 10–13). These simulations predict
that the complex between BAX and BCL2A1 is significantly
increased, while free BCL2A1 and BCL2A1 bound to NOXA, BIM,
and BID, are all significantly decreased in RC-K8 cells susceptible to
BCL-xL inhibition (Supplementary Fig. 10). Interestingly, in SUDHL8
cells responding to MCL1 inhibition a significant role was
predicted for BCL2A1, while this was not seen in RC-K8 cells
(Supplementary Figs. 11, 13).
Virtual cell lines reveal that inherent cell-to-cell variability in the

sequestration of anti-apoptotic BCL2 proteins, and subcellular
localization of pro-apoptotic complexes, can create an inherent
treatment resistant cell population. Importantly, we found that the
mechanisms of inherent treatment resistance were predicted to
be diverse between different cell lines and BH3-mimetics.

Synergistic combinations of BH3-mimetics can be
computationally identified and experimentally validated
To test the ability of this systems biology approach to enable
rational targeting of DLBCL we simulated combinations of BH3-
mimetics and identified a number of synergistic combinations
(Supplementary Fig. 14). In BCL-xL dependent cell lines, RC-K8
(Supplementary Fig. 14C) and SUDHL8 (Supplementary Fig. 14D),
synergy was predicted between BCL-xL and MCL1 inhibitors.
Additionally, in RC-K8 cells, the model predicted synergy between
BCL-xL and BCL2 inhibition. The exquisite sensitivity of RC-K8 cells
to A1331852 monotherapy (BCL-xL-targeting BH3-mimetic) meant
that experimentally testing this predicted synergy would be
challenging and unlikely to identify therapeutically significant
combination therapies.
Simulations in virtual U2932 cells predicted no response to

MCL1 inhibition alone. However, adding MCL1 inhibition in the
context of BCL2 inhibition was predicted to synergistically induce
apoptosis (Fig. 4A, left). Predicting the impact of combining BCL2
and MCL1 inhibition across a broad range of doses indicated that
it should be possible to experimentally test this prediction (Fig. 4B
left, average Bliss synergy score: 15.31). The model prediction of

synergy between BCL2 and MCL1 inhibitors in U2932 was
experimentally tested by treating U2932 cells with ABT-199,
AZD5991 and the combination in equimolar concentrations to
recapitulate the computational predictions. In striking concor-
dance with the computational prediction, U2932 cells were
insensitive to the MCL1-specific monotherapy (AZD5991) but in
combination with the BCL2-specific BH3-mimetic, ABT-199,
showed synergistic induction of apoptosis (Fig. 4A, right).
Extending this analysis to all combinations of doses in both the
computational model and experimental system (Fig. 4B, Supple-
mentary Fig. 15) confirmed the combination of BH3-mimetics was
synergistic (average Bliss synergy score: 23.96). While total
inhibition of MCL1 and BCL2 was predicted to reduce viability to
90% and 30%, respectively, the combination was predicted to
result in a reduction to 0% viability. This was confirmed by our
experimental findings, which showed that the top dose of
AZD5991 and ABT-199 resulted in 98 and 36% viability
respectively, while combining these two agents at the same

Fig. 4 Synergistic interactions between BH3-mimetics can be
computationally identified and then experimentally validated.
A (Left panel) Model simulation predicting synergy between BCL2
and MCL1 inhibition in U2932 cells (green curve). The model
predicts a moderate response to BCL2 inhibition alone (black curve),
no response to MCL1 inhibition alone (blue curve) but a greater
than additive response when MCL1 and BCL2 inhibition is combined
at equal levels. (Right panel) Experimental data validates the model
prediction, demonstrating synergy between the BCL2-specific
inhibitor, ABT-199, and the MCL1-specific inhibitor, AZD5991. The
combination was tested at equimolar concentrations. B Complete
dose–response matrices showing the impact on cell viability of all
combinations of simulated inhibition strengths (left) and experi-
mentally measured BH3-mimetic doses (right) for BCL2 inhibition
(ABT-199) and MCL1 inhibition (AZD5991). Viability was calculated at
72 h for both computational models and experimental measure-
ments. Summary synergy scores of the model simulation (left panel)
and experimental data (right panel), calculated using SynergyFinder
software50.
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concentrations reduced viability to 5% (Fig. 4B). Computationally
identifying, and experimentally validating synergistic combina-
tions of BH3-mimetics demonstrates that a systems biology
approach has the potential to enable rational assignment of
efficacious targeted therapies in DLBCL.

DISCUSSION
In this study we created a computational model of apoptosis and,
using experimental data, we established a library of virtual DLBCL
cell lines that could reliably predict experimentally measured
responses to BH3-mimetics. Importantly, this systems biology
approach was also capable of identifying synergistic combinations
of inhibitors, which we then experimentally validated. The success
of our approach when using a library of heterogeneous cell lines
that captures the variability seen in patient samples indicates that
this approach may form the foundation of a personalized
treatment approach in DLBCL.
While the model constructed here was based on B cell

lymphoma, many of these apoptotic interactions are conserved
in other cell types both in health and malignancies26,41. To
facilitate translating this approach to the challenges associated
with the rational assignment of targeted inhibitors in other
hematological and solid malignancies, we have made the
complete library of virtual cell lines freely available (https://
github.com/SiFTW/BH3Models).
One strength of computational modeling is the ability to

incorporate and test the consistency of multiple modalities of data
and assimilate them into a model that encapsulates the current
state of knowledge for a given system. While we acknowledge
that immunoprecipitation and co-immunoprecipitation blots
provide semi-quantitative data, the ability of this data to create
models capable of accurate predictions across a library of cell lines
and BH3-mimetics indicates that our modeling approach is robust
to the inherent variability of such data. While proteomic data may
provide more precise quantification, this data critically lacks
information on binding partners that were found to be key to
determining response. The ability of computational systems
biology to predict the response to BH3-mimetics motivates
extending the approach to patient samples. Given the challenges
of obtaining immunoprecipitation data for each patient, future
work to identify surrogate biomarkers that provide clinically-
obtainable measurements for the underlying network state will be
required. Modeling results can be used to inform statistical
regression to identify the most informative parameters that can be
experimentally measured and perturbed. Regression techniques
such as LASSO enable the concentrations of all molecular
components from many simulations to be reduced to those most
predictive of response to therapy. Previous work used this
approach to computationally identify a small number of
parameters that explain variability in the proliferative outcome
in non-malignant B cells, which was then validated experimen-
tally15. We expect that if a similar approach is taken in future work,
we will be able to identify 2–3 measurable “biomarkers” that can
be obtained from diagnostic samples that are predictive of which
BH3-mimetic a particular tumor is most vulnerable to. This would
enable models to be created that represent patient’s tumors using
measurements that can feasibly be obtained from diagnostic
samples, potentially unlocking more personalized treatments
for DLBCL.
The model utilized here is a sub-network of the apoptotic

signaling network. As such, the model only accounts for the
mutational and molecular heterogeneity in a proportion of the
important signaling networks implicated in B cell malignancies. To
assess the impact of dysregulation of multiple signaling networks
(including upstream receptor proximal signaling, NF-κB regulation,
cell cycle and differentiation), and treatment modalities targeting
these networks, future work will necessarily require more

comprehensive models. Established multi-scale B cell models
containing these signaling networks and linking them to cell fates
have demonstrated utility in predicting the emergent impact of
genetic events and inhibitors on cell population phenotypes15,16.
Re-purposing these models for lymphoma, and incorporating the
insight generated here, may enable rational targeting of
additional therapies and combinations of therapies that target
these signaling networks (such as ibrutinib42, idelalisib43, and
copanlisib44,45).
While we have tested many of the computationally generated

predictions in this study in order to validate our models, many
intriguing predictions remain as avenues for future work. For
example, predictions of which cells will survive BH3-mimetic
treatment may provide insight into how combination therapies
or pre-treatments might be deployed to optimize the molecular
network state for sensitivity to BH3-mimetics. It is likely that
treatment-resistant cells are vulnerable to alternative targets as
each apoptotic network state we investigated had both
resistances and vulnerabilities. The cell lines we investigated
covered a broad range of expression of BCL2 family member
expression, a broad variety of protein-protein interaction states,
multiple cell-of-origin classifications, and common mutational
events (Fig. 3 and Supplementary Fig. 4). However, the existence
of B cell lymphoma lines (such as DLBCL line HBL-1, and primary
mediastinal B cell lymphoma line such as Karpas-1106) that do
not respond well to any BH3-mimetic indicates that additional
cellular archetypes exist13. Identifying therapeutic vulnerabilities
in the network state of these broadly resistant cells may help
target the most challenging cases. However, as these lines are in
the minority, the primary challenge in adopting more targeted
therapies in B cell lymphoma appears to be getting the right
combination of drugs that are already available into the right
patients. Systems biology modeling may enable this and by
modeling individual patients unlock the potential of persona-
lized medicine.

METHODS
Experimental procedures
U2932 cells were maintained in RPMI-1640 media (21870076,
Gibco; Life Technologies) with 10% fetal calf serum (10270-106,
Gibco). Cells were plated at 4 × 105 cells/mL and treated with ABT-
199 and AZD5991 (Selleck Chemicals, Houston, TX46,) 24 h before
analysis using CellTiter-Glo viability assay (Promega, Madison, WI).
Response was normalized to a DMSO control.

BCL2 family signaling network model topology
The BCL2 family signaling network model was constructed from
known protein interactions, requiring expression and degradation
parameters for each protein29,32,47, as well as binding rates for
interacting proteins (Supplementary Table 1)29,32. The chosen set
of interactions yields our BCL2 network topology (Fig. 1).
Additional description of the conceptual frameworks and
approach used in model construction are provided in Supple-
mentary Note 1.

Model construction
Model construction was achieved by building on previous models
and incorporating experimentally measured BCL2 family protein
expressions, binding affinities, kinetic rates, and knowledge of
genetic lesions, see Supplementary Note 113,32,47. The model
contains 80 molecular species, represented by 80 ODEs, 202
reactions, and 203 parameters, which are described in Supple-
mentary Note 1. All parameters are consistent for all simulations
(Supplementary Table 1), other than expression/degradation rates
indicated in Supplementary Table 2. These cell line-specific
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parameters were manually fit to recapitulate cell line-specific IP
and co-IP data13. Where a particular cell line does not contain
detectable protein by IP or co-IP we exclude that protein, and
complexes containing that protein, from the ODE systems to
reduce computational complexity. Parameter fitting was per-
formed manually, informed by experimental data as described in
Supplementary Note 1.
Three.csv files were created for each virtual cell model,

containing reactions between interacting proteins, the rate laws
defining the reactions and a parameter file, respectively. Reactions
between interacting proteins are governed by mass action
kinetics, where interactions can be either simple binding and
unbinding or binding/unbinding leading to activation of a new
species. The three.csv files were used as inputs, to generate the
system of Ordinary Differential Equations (ODEs) that defines our
network model using custom python code (available: https://
github.com/SiFTW/CSV2JuliaDiffEq).

Solving models/running simulations
The programmatically generated model files were imported into
Julia48, and solved using the DifferentialEquations.jl package49.
Numerical simulations, initial conditions, solver options, and the
code to generate all figures are available on GitHub (https://
github.com/SiFTW/BH3Models).

Simulating cell-to-cell variability
Cell populations of 100 cells were simulated with molecular cell-
to-cell variability introduced in initial conditions. Initial conditions
were distributed using a lognormal distribution with coefficient of
variation (32%) defined by previous live-cell lineage tracking
experiments in primary B cells15.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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