At Brighton and Sussex Medical School, The University of Sussex
We’re tackling cancer with systems biology, in the beautiful city of Brighton, UK.
Our interdisciplinary approach aims to bring systems biology approaches to the clinic.
to represent cell signaling
to simulate disease
to test predictions
to improve treatments
Decades of research into the molecular signalling determinants of B cell fates, and recent progress in characterising the genetic drivers of lymphoma, has led to a detailed understanding of B cell malignancies but also revealed daunting heterogeneity. While current therapies for diffuse large B-cell lymphoma are effective for some patients, they are largely agnostic to the biology of each individual’s disease, and approximately one third of patients experience relapsed/refractory disease. Consequently, the challenge is to understand how each patient’s mutational burden and tumour microenvironment combine to determine their response to treatment; overcoming this challenge will improve outcomes in lymphoma. This mini review highlights how data-driven modelling, statistical approaches and machine learning are being used to unravel the heterogeneity of lymphoma. We review how mechanistic computational models provide a framework to embed patient data within knowledge of signalling. Focusing on recurrently dysregulated signalling networks in lymphoma (including NF-κB, apoptosis and the cell cycle), we discuss the application of state-of-the-art mechanistic models to lymphoma. We review recent advances in which computational models have demonstrated the power to predict prognosis, identify promising combination therapies and develop digital twins that can recapitulate clinical trial results. With the future of treatment for lymphoma poised to transition from one-size-fits-all towards personalised therapies, computational models are well-placed to identify the right treatments to the right patients, improving outcomes for all lymphoma patients.
Genetic heterogeneity and co-occurring driver mutations impact clinical outcomes in blood cancers, but predicting the emergent effect of co-occurring mutations that impact multiple complex and interacting signalling networks is challenging. Here, we used mathematical models to predict the impact of co-occurring mutations on cellular signalling and cell fates in diffuse large B cell lymphoma and multiple myeloma. Simulations predicted adverse impact on clinical prognosis when combinations of mutations induced both anti-apoptotic (AA) and pro-proliferative (PP) signalling. We integrated patient-specific mutational profiles into personalised lymphoma models, and identified patients characterised by simultaneous upregulation of anti-apoptotic and pro-proliferative (AAPP) signalling in all genomic and cell-of-origin classifications (8-25% of patients). In a discovery cohort and two validation cohorts, patients with upregulation of neither, one (AA or PP), or both (AAPP) signalling states had good, intermediate and poor prognosis respectively. Combining AAPP signalling with genetic or clinical prognostic predictors reliably stratified patients into striking prognostic categories. AAPP patients in poor prognosis genetic clusters had 7.8 months median overall survival, while patients lacking both features had 90% overall survival at 120 months in a validation cohort. Personalised computational models enable identification of novel risk-stratified patient subgroups, providing a valuable tool for future risk-adapted clinical trials.